| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  2  ∈  ℕ ) | 
						
							| 3 | 2 | nncnd | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  2  ∈  ℂ ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  𝑀  ∈  ℕ0 ) | 
						
							| 5 | 3 4 | expp1d | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  ( 2 ↑ ( 𝑀  +  1 ) )  =  ( ( 2 ↑ 𝑀 )  ·  2 ) ) | 
						
							| 6 | 2 4 | nnexpcld | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  ( 2 ↑ 𝑀 )  ∈  ℕ ) | 
						
							| 7 | 6 | nncnd | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  ( 2 ↑ 𝑀 )  ∈  ℂ ) | 
						
							| 8 | 7 3 | mulcomd | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 2 ↑ 𝑀 )  ·  2 )  =  ( 2  ·  ( 2 ↑ 𝑀 ) ) ) | 
						
							| 9 | 5 8 | eqtrd | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  ( 2 ↑ ( 𝑀  +  1 ) )  =  ( 2  ·  ( 2 ↑ 𝑀 ) ) ) | 
						
							| 10 | 9 | oveq2d | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑁  /  ( 2 ↑ ( 𝑀  +  1 ) ) )  =  ( 𝑁  /  ( 2  ·  ( 2 ↑ 𝑀 ) ) ) ) | 
						
							| 11 |  | simpl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  𝑁  ∈  ℤ ) | 
						
							| 12 | 11 | zcnd | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  𝑁  ∈  ℂ ) | 
						
							| 13 | 2 | nnne0d | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  2  ≠  0 ) | 
						
							| 14 | 6 | nnne0d | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  ( 2 ↑ 𝑀 )  ≠  0 ) | 
						
							| 15 | 12 3 7 13 14 | divdiv1d | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑁  /  2 )  /  ( 2 ↑ 𝑀 ) )  =  ( 𝑁  /  ( 2  ·  ( 2 ↑ 𝑀 ) ) ) ) | 
						
							| 16 | 10 15 | eqtr4d | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑁  /  ( 2 ↑ ( 𝑀  +  1 ) ) )  =  ( ( 𝑁  /  2 )  /  ( 2 ↑ 𝑀 ) ) ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ ( 𝑀  +  1 ) ) ) )  =  ( ⌊ ‘ ( ( 𝑁  /  2 )  /  ( 2 ↑ 𝑀 ) ) ) ) | 
						
							| 18 | 11 | zred | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  𝑁  ∈  ℝ ) | 
						
							| 19 | 18 | rehalfcld | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑁  /  2 )  ∈  ℝ ) | 
						
							| 20 |  | fldiv | ⊢ ( ( ( 𝑁  /  2 )  ∈  ℝ  ∧  ( 2 ↑ 𝑀 )  ∈  ℕ )  →  ( ⌊ ‘ ( ( ⌊ ‘ ( 𝑁  /  2 ) )  /  ( 2 ↑ 𝑀 ) ) )  =  ( ⌊ ‘ ( ( 𝑁  /  2 )  /  ( 2 ↑ 𝑀 ) ) ) ) | 
						
							| 21 | 19 6 20 | syl2anc | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  ( ⌊ ‘ ( ( ⌊ ‘ ( 𝑁  /  2 ) )  /  ( 2 ↑ 𝑀 ) ) )  =  ( ⌊ ‘ ( ( 𝑁  /  2 )  /  ( 2 ↑ 𝑀 ) ) ) ) | 
						
							| 22 | 17 21 | eqtr4d | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ ( 𝑀  +  1 ) ) ) )  =  ( ⌊ ‘ ( ( ⌊ ‘ ( 𝑁  /  2 ) )  /  ( 2 ↑ 𝑀 ) ) ) ) | 
						
							| 23 | 22 | breq2d | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  ( 2  ∥  ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ ( 𝑀  +  1 ) ) ) )  ↔  2  ∥  ( ⌊ ‘ ( ( ⌊ ‘ ( 𝑁  /  2 ) )  /  ( 2 ↑ 𝑀 ) ) ) ) ) | 
						
							| 24 | 23 | notbid | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  ( ¬  2  ∥  ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ ( 𝑀  +  1 ) ) ) )  ↔  ¬  2  ∥  ( ⌊ ‘ ( ( ⌊ ‘ ( 𝑁  /  2 ) )  /  ( 2 ↑ 𝑀 ) ) ) ) ) | 
						
							| 25 |  | peano2nn0 | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  +  1 )  ∈  ℕ0 ) | 
						
							| 26 |  | bitsval2 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( 𝑀  +  1 )  ∈  ℕ0 )  →  ( ( 𝑀  +  1 )  ∈  ( bits ‘ 𝑁 )  ↔  ¬  2  ∥  ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ ( 𝑀  +  1 ) ) ) ) ) ) | 
						
							| 27 | 25 26 | sylan2 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑀  +  1 )  ∈  ( bits ‘ 𝑁 )  ↔  ¬  2  ∥  ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ ( 𝑀  +  1 ) ) ) ) ) ) | 
						
							| 28 | 19 | flcld | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  ( ⌊ ‘ ( 𝑁  /  2 ) )  ∈  ℤ ) | 
						
							| 29 |  | bitsval2 | ⊢ ( ( ( ⌊ ‘ ( 𝑁  /  2 ) )  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑀  ∈  ( bits ‘ ( ⌊ ‘ ( 𝑁  /  2 ) ) )  ↔  ¬  2  ∥  ( ⌊ ‘ ( ( ⌊ ‘ ( 𝑁  /  2 ) )  /  ( 2 ↑ 𝑀 ) ) ) ) ) | 
						
							| 30 | 28 29 | sylancom | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑀  ∈  ( bits ‘ ( ⌊ ‘ ( 𝑁  /  2 ) ) )  ↔  ¬  2  ∥  ( ⌊ ‘ ( ( ⌊ ‘ ( 𝑁  /  2 ) )  /  ( 2 ↑ 𝑀 ) ) ) ) ) | 
						
							| 31 | 24 27 30 | 3bitr4d | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑀  +  1 )  ∈  ( bits ‘ 𝑁 )  ↔  𝑀  ∈  ( bits ‘ ( ⌊ ‘ ( 𝑁  /  2 ) ) ) ) ) |