Metamath Proof Explorer


Theorem fldiv

Description: Cancellation of the embedded floor of a real divided by an integer. (Contributed by NM, 16-Aug-2008)

Ref Expression
Assertion fldiv ANAN=AN

Proof

Step Hyp Ref Expression
1 eqid A=A
2 eqid AA=AA
3 1 2 intfrac2 A0AAAA<1A=A+A-A
4 3 simp3d AA=A+A-A
5 4 adantr ANA=A+A-A
6 5 oveq1d ANAN=A+A-AN
7 reflcl AA
8 7 recnd AA
9 resubcl AAAA
10 7 9 mpdan AAA
11 10 recnd AAA
12 nncn NN
13 nnne0 NN0
14 12 13 jca NNN0
15 divdir AAANN0A+A-AN=AN+AAN
16 8 11 14 15 syl2an3an ANA+A-AN=AN+AAN
17 6 16 eqtrd ANAN=AN+AAN
18 flcl AA
19 eqid AN=AN
20 eqid ANAN=ANAN
21 19 20 intfracq AN0ANANANANN1NAN=AN+AN-AN
22 21 simp3d ANAN=AN+AN-AN
23 18 22 sylan ANAN=AN+AN-AN
24 23 oveq1d ANAN+AAN=AN+ANAN+AAN
25 7 adantr ANA
26 nnre NN
27 26 adantl ANN
28 13 adantl ANN0
29 25 27 28 redivcld ANAN
30 reflcl ANAN
31 29 30 syl ANAN
32 31 recnd ANAN
33 29 31 resubcld ANANAN
34 33 recnd ANANAN
35 10 adantr ANAA
36 35 27 28 redivcld ANAAN
37 36 recnd ANAAN
38 32 34 37 addassd ANAN+ANAN+AAN=AN+ANAN+AAN
39 17 24 38 3eqtrd ANAN=AN+ANAN+AAN
40 39 fveq2d ANAN=AN+ANAN+AAN
41 21 simp1d AN0ANAN
42 18 41 sylan AN0ANAN
43 fracge0 A0AA
44 10 43 jca AAA0AA
45 nngt0 N0<N
46 26 45 jca NN0<N
47 divge0 AA0AAN0<N0AAN
48 44 46 47 syl2an AN0AAN
49 33 36 42 48 addge0d AN0AN-AN+AAN
50 peano2rem NN1
51 26 50 syl NN1
52 51 26 13 redivcld NN1N
53 nnrecre N1N
54 52 53 jca NN1N1N
55 54 adantl ANN1N1N
56 33 36 55 jca31 ANANANAANN1N1N
57 21 simp2d ANANANN1N
58 18 57 sylan ANANANN1N
59 fraclt1 AAA<1
60 59 adantr ANAA<1
61 1re 1
62 ltdiv1 AA1N0<NAA<1AAN<1N
63 61 62 mp3an2 AAN0<NAA<1AAN<1N
64 10 46 63 syl2an ANAA<1AAN<1N
65 60 64 mpbid ANAAN<1N
66 58 65 jca ANANANN1NAAN<1N
67 leltadd ANANAANN1N1NANANN1NAAN<1NAN-AN+AAN<N1N+1N
68 56 66 67 sylc ANAN-AN+AAN<N1N+1N
69 ax-1cn 1
70 npcan N1N-1+1=N
71 12 69 70 sylancl NN-1+1=N
72 71 oveq1d NN-1+1N=NN
73 51 recnd NN1
74 divdir N11NN0N-1+1N=N1N+1N
75 69 74 mp3an2 N1NN0N-1+1N=N1N+1N
76 73 12 13 75 syl12anc NN-1+1N=N1N+1N
77 12 13 dividd NNN=1
78 72 76 77 3eqtr3d NN1N+1N=1
79 78 adantl ANN1N+1N=1
80 68 79 breqtrd ANAN-AN+AAN<1
81 29 flcld ANAN
82 33 36 readdcld ANAN-AN+AAN
83 flbi2 ANAN-AN+AANAN+ANAN+AAN=AN0AN-AN+AANAN-AN+AAN<1
84 81 82 83 syl2anc ANAN+ANAN+AAN=AN0AN-AN+AANAN-AN+AAN<1
85 49 80 84 mpbir2and ANAN+ANAN+AAN=AN
86 40 85 eqtr2d ANAN=AN