Metamath Proof Explorer


Theorem fldiv2

Description: Cancellation of an embedded floor of a ratio. Generalization of Equation 2.4 in CormenLeisersonRivest p. 33 (where A must be an integer). (Contributed by NM, 9-Nov-2008)

Ref Expression
Assertion fldiv2 AMNAMN=A M N

Proof

Step Hyp Ref Expression
1 nndivre AMAM
2 fldiv AMNAMN=AMN
3 1 2 stoic3 AMNAMN=AMN
4 recn AA
5 nncn MM
6 nnne0 MM0
7 5 6 jca MMM0
8 nncn NN
9 nnne0 NN0
10 8 9 jca NNN0
11 divdiv1 AMM0NN0AMN=A M N
12 4 7 10 11 syl3an AMNAMN=A M N
13 12 fveq2d AMNAMN=A M N
14 3 13 eqtrd AMNAMN=A M N