Metamath Proof Explorer


Theorem intfrac2

Description: Decompose a real into integer and fractional parts. TODO - should we replace this with intfrac ? (Contributed by NM, 16-Aug-2008)

Ref Expression
Hypotheses intfrac2.1 Z=A
intfrac2.2 F=AZ
Assertion intfrac2 A0FF<1A=Z+F

Proof

Step Hyp Ref Expression
1 intfrac2.1 Z=A
2 intfrac2.2 F=AZ
3 fracge0 A0AA
4 1 oveq2i AZ=AA
5 2 4 eqtri F=AA
6 3 5 breqtrrdi A0F
7 fraclt1 AAA<1
8 5 7 eqbrtrid AF<1
9 2 oveq2i Z+F=Z+A-Z
10 flcl AA
11 1 10 eqeltrid AZ
12 11 zcnd AZ
13 recn AA
14 12 13 pncan3d AZ+A-Z=A
15 9 14 eqtr2id AA=Z+F
16 6 8 15 3jca A0FF<1A=Z+F