Metamath Proof Explorer


Theorem divdir

Description: Distribution of division over addition. (Contributed by NM, 31-Jul-2004) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion divdir ABCC0A+BC=AC+BC

Proof

Step Hyp Ref Expression
1 simp1 ABCC0A
2 simp2 ABCC0B
3 reccl CC01C
4 3 3ad2ant3 ABCC01C
5 1 2 4 adddird ABCC0A+B1C=A1C+B1C
6 1 2 addcld ABCC0A+B
7 simp3l ABCC0C
8 simp3r ABCC0C0
9 divrec A+BCC0A+BC=A+B1C
10 6 7 8 9 syl3anc ABCC0A+BC=A+B1C
11 divrec ACC0AC=A1C
12 1 7 8 11 syl3anc ABCC0AC=A1C
13 divrec BCC0BC=B1C
14 2 7 8 13 syl3anc ABCC0BC=B1C
15 12 14 oveq12d ABCC0AC+BC=A1C+B1C
16 5 10 15 3eqtr4d ABCC0A+BC=AC+BC