Metamath Proof Explorer


Theorem bits0o

Description: The zeroth bit of an odd number is zero. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion bits0o
|- ( N e. ZZ -> 0 e. ( bits ` ( ( 2 x. N ) + 1 ) ) )

Proof

Step Hyp Ref Expression
1 2z
 |-  2 e. ZZ
2 dvdsmul1
 |-  ( ( 2 e. ZZ /\ N e. ZZ ) -> 2 || ( 2 x. N ) )
3 1 2 mpan
 |-  ( N e. ZZ -> 2 || ( 2 x. N ) )
4 1 a1i
 |-  ( N e. ZZ -> 2 e. ZZ )
5 id
 |-  ( N e. ZZ -> N e. ZZ )
6 4 5 zmulcld
 |-  ( N e. ZZ -> ( 2 x. N ) e. ZZ )
7 2nn
 |-  2 e. NN
8 7 a1i
 |-  ( N e. ZZ -> 2 e. NN )
9 1lt2
 |-  1 < 2
10 9 a1i
 |-  ( N e. ZZ -> 1 < 2 )
11 ndvdsp1
 |-  ( ( ( 2 x. N ) e. ZZ /\ 2 e. NN /\ 1 < 2 ) -> ( 2 || ( 2 x. N ) -> -. 2 || ( ( 2 x. N ) + 1 ) ) )
12 6 8 10 11 syl3anc
 |-  ( N e. ZZ -> ( 2 || ( 2 x. N ) -> -. 2 || ( ( 2 x. N ) + 1 ) ) )
13 3 12 mpd
 |-  ( N e. ZZ -> -. 2 || ( ( 2 x. N ) + 1 ) )
14 6 peano2zd
 |-  ( N e. ZZ -> ( ( 2 x. N ) + 1 ) e. ZZ )
15 bits0
 |-  ( ( ( 2 x. N ) + 1 ) e. ZZ -> ( 0 e. ( bits ` ( ( 2 x. N ) + 1 ) ) <-> -. 2 || ( ( 2 x. N ) + 1 ) ) )
16 14 15 syl
 |-  ( N e. ZZ -> ( 0 e. ( bits ` ( ( 2 x. N ) + 1 ) ) <-> -. 2 || ( ( 2 x. N ) + 1 ) ) )
17 13 16 mpbird
 |-  ( N e. ZZ -> 0 e. ( bits ` ( ( 2 x. N ) + 1 ) ) )