Metamath Proof Explorer


Theorem bits0e

Description: The zeroth bit of an even number is zero. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion bits0e ( 𝑁 ∈ ℤ → ¬ 0 ∈ ( bits ‘ ( 2 · 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 2z 2 ∈ ℤ
2 dvdsmul1 ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 2 ∥ ( 2 · 𝑁 ) )
3 1 2 mpan ( 𝑁 ∈ ℤ → 2 ∥ ( 2 · 𝑁 ) )
4 1 a1i ( 𝑁 ∈ ℤ → 2 ∈ ℤ )
5 id ( 𝑁 ∈ ℤ → 𝑁 ∈ ℤ )
6 4 5 zmulcld ( 𝑁 ∈ ℤ → ( 2 · 𝑁 ) ∈ ℤ )
7 bits0 ( ( 2 · 𝑁 ) ∈ ℤ → ( 0 ∈ ( bits ‘ ( 2 · 𝑁 ) ) ↔ ¬ 2 ∥ ( 2 · 𝑁 ) ) )
8 6 7 syl ( 𝑁 ∈ ℤ → ( 0 ∈ ( bits ‘ ( 2 · 𝑁 ) ) ↔ ¬ 2 ∥ ( 2 · 𝑁 ) ) )
9 8 con2bid ( 𝑁 ∈ ℤ → ( 2 ∥ ( 2 · 𝑁 ) ↔ ¬ 0 ∈ ( bits ‘ ( 2 · 𝑁 ) ) ) )
10 3 9 mpbid ( 𝑁 ∈ ℤ → ¬ 0 ∈ ( bits ‘ ( 2 · 𝑁 ) ) )