Metamath Proof Explorer


Definition df-bits

Description: Define the binary bits of an integer. The expression M e. ( bitsN ) means that the M -th bit of N is 1 (and its negation means the bit is 0). (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Assertion df-bits bits=nm0|¬2n2m

Detailed syntax breakdown

Step Hyp Ref Expression
0 cbits classbits
1 vn setvarn
2 cz class
3 vm setvarm
4 cn0 class0
5 c2 class2
6 cdvds class
7 cfl class.
8 1 cv setvarn
9 cdiv class÷
10 cexp class^
11 3 cv setvarm
12 5 11 10 co class2m
13 8 12 9 co classn2m
14 13 7 cfv classn2m
15 5 14 6 wbr wff2n2m
16 15 wn wff¬2n2m
17 16 3 4 crab classm0|¬2n2m
18 1 2 17 cmpt classnm0|¬2n2m
19 0 18 wceq wffbits=nm0|¬2n2m