Database
ELEMENTARY NUMBER THEORY
Elementary properties of divisibility
Bit sequences
df-bits
Metamath Proof Explorer
Description: Define the binary bits of an integer. The expression
M e. ( bits N ) means that the M -th bit of N is 1 (and
its negation means the bit is 0). (Contributed by Mario Carneiro , 4-Sep-2016)
Ref
Expression
Assertion
df-bits
⊢ bits = n ∈ ℤ ⟼ m ∈ ℕ 0 | ¬ 2 ∥ n 2 m
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cbits
class bits
1
vn
setvar n
2
cz
class ℤ
3
vm
setvar m
4
cn0
class ℕ 0
5
c2
class 2
6
cdvds
class ∥
7
cfl
class .
8
1
cv
setvar n
9
cdiv
class ÷
10
cexp
class ^
11
3
cv
setvar m
12
5 11 10
co
class 2 m
13
8 12 9
co
class n 2 m
14
13 7
cfv
class n 2 m
15
5 14 6
wbr
wff 2 ∥ n 2 m
16
15
wn
wff ¬ 2 ∥ n 2 m
17
16 3 4
crab
class m ∈ ℕ 0 | ¬ 2 ∥ n 2 m
18
1 2 17
cmpt
class n ∈ ℤ ⟼ m ∈ ℕ 0 | ¬ 2 ∥ n 2 m
19
0 18
wceq
wff bits = n ∈ ℤ ⟼ m ∈ ℕ 0 | ¬ 2 ∥ n 2 m