| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2nn |
|- 2 e. NN |
| 2 |
1
|
a1i |
|- ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> 2 e. NN ) |
| 3 |
|
0nn0 |
|- 0 e. NN0 |
| 4 |
3
|
a1i |
|- ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> 0 e. NN0 ) |
| 5 |
|
nn0rp0 |
|- ( N e. NN0 -> N e. ( 0 [,) +oo ) ) |
| 6 |
5
|
adantr |
|- ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> N e. ( 0 [,) +oo ) ) |
| 7 |
|
nn0digval |
|- ( ( 2 e. NN /\ 0 e. NN0 /\ N e. ( 0 [,) +oo ) ) -> ( 0 ( digit ` 2 ) N ) = ( ( |_ ` ( N / ( 2 ^ 0 ) ) ) mod 2 ) ) |
| 8 |
2 4 6 7
|
syl3anc |
|- ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( 0 ( digit ` 2 ) N ) = ( ( |_ ` ( N / ( 2 ^ 0 ) ) ) mod 2 ) ) |
| 9 |
|
2cn |
|- 2 e. CC |
| 10 |
|
exp0 |
|- ( 2 e. CC -> ( 2 ^ 0 ) = 1 ) |
| 11 |
9 10
|
mp1i |
|- ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( 2 ^ 0 ) = 1 ) |
| 12 |
11
|
oveq2d |
|- ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( N / ( 2 ^ 0 ) ) = ( N / 1 ) ) |
| 13 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
| 14 |
13
|
div1d |
|- ( N e. NN0 -> ( N / 1 ) = N ) |
| 15 |
14
|
adantr |
|- ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( N / 1 ) = N ) |
| 16 |
12 15
|
eqtrd |
|- ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( N / ( 2 ^ 0 ) ) = N ) |
| 17 |
16
|
fveq2d |
|- ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( |_ ` ( N / ( 2 ^ 0 ) ) ) = ( |_ ` N ) ) |
| 18 |
17
|
oveq1d |
|- ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( ( |_ ` ( N / ( 2 ^ 0 ) ) ) mod 2 ) = ( ( |_ ` N ) mod 2 ) ) |
| 19 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
| 20 |
|
flid |
|- ( N e. ZZ -> ( |_ ` N ) = N ) |
| 21 |
19 20
|
syl |
|- ( N e. NN0 -> ( |_ ` N ) = N ) |
| 22 |
21
|
adantr |
|- ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( |_ ` N ) = N ) |
| 23 |
22
|
oveq1d |
|- ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( ( |_ ` N ) mod 2 ) = ( N mod 2 ) ) |
| 24 |
|
nn0z |
|- ( ( N / 2 ) e. NN0 -> ( N / 2 ) e. ZZ ) |
| 25 |
24
|
adantl |
|- ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( N / 2 ) e. ZZ ) |
| 26 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
| 27 |
26
|
adantr |
|- ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> N e. RR ) |
| 28 |
|
2rp |
|- 2 e. RR+ |
| 29 |
|
mod0 |
|- ( ( N e. RR /\ 2 e. RR+ ) -> ( ( N mod 2 ) = 0 <-> ( N / 2 ) e. ZZ ) ) |
| 30 |
27 28 29
|
sylancl |
|- ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( ( N mod 2 ) = 0 <-> ( N / 2 ) e. ZZ ) ) |
| 31 |
25 30
|
mpbird |
|- ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( N mod 2 ) = 0 ) |
| 32 |
23 31
|
eqtrd |
|- ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( ( |_ ` N ) mod 2 ) = 0 ) |
| 33 |
18 32
|
eqtrd |
|- ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( ( |_ ` ( N / ( 2 ^ 0 ) ) ) mod 2 ) = 0 ) |
| 34 |
8 33
|
eqtrd |
|- ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( 0 ( digit ` 2 ) N ) = 0 ) |