| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn |  |-  2 e. NN | 
						
							| 2 | 1 | a1i |  |-  ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> 2 e. NN ) | 
						
							| 3 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 4 | 3 | a1i |  |-  ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> 0 e. NN0 ) | 
						
							| 5 |  | nn0rp0 |  |-  ( N e. NN0 -> N e. ( 0 [,) +oo ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> N e. ( 0 [,) +oo ) ) | 
						
							| 7 |  | nn0digval |  |-  ( ( 2 e. NN /\ 0 e. NN0 /\ N e. ( 0 [,) +oo ) ) -> ( 0 ( digit ` 2 ) N ) = ( ( |_ ` ( N / ( 2 ^ 0 ) ) ) mod 2 ) ) | 
						
							| 8 | 2 4 6 7 | syl3anc |  |-  ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( 0 ( digit ` 2 ) N ) = ( ( |_ ` ( N / ( 2 ^ 0 ) ) ) mod 2 ) ) | 
						
							| 9 |  | 2cn |  |-  2 e. CC | 
						
							| 10 |  | exp0 |  |-  ( 2 e. CC -> ( 2 ^ 0 ) = 1 ) | 
						
							| 11 | 9 10 | mp1i |  |-  ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( 2 ^ 0 ) = 1 ) | 
						
							| 12 | 11 | oveq2d |  |-  ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( N / ( 2 ^ 0 ) ) = ( N / 1 ) ) | 
						
							| 13 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 14 | 13 | div1d |  |-  ( N e. NN0 -> ( N / 1 ) = N ) | 
						
							| 15 | 14 | adantr |  |-  ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( N / 1 ) = N ) | 
						
							| 16 | 12 15 | eqtrd |  |-  ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( N / ( 2 ^ 0 ) ) = N ) | 
						
							| 17 | 16 | fveq2d |  |-  ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( |_ ` ( N / ( 2 ^ 0 ) ) ) = ( |_ ` N ) ) | 
						
							| 18 | 17 | oveq1d |  |-  ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( ( |_ ` ( N / ( 2 ^ 0 ) ) ) mod 2 ) = ( ( |_ ` N ) mod 2 ) ) | 
						
							| 19 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 20 |  | flid |  |-  ( N e. ZZ -> ( |_ ` N ) = N ) | 
						
							| 21 | 19 20 | syl |  |-  ( N e. NN0 -> ( |_ ` N ) = N ) | 
						
							| 22 | 21 | adantr |  |-  ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( |_ ` N ) = N ) | 
						
							| 23 | 22 | oveq1d |  |-  ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( ( |_ ` N ) mod 2 ) = ( N mod 2 ) ) | 
						
							| 24 |  | nn0z |  |-  ( ( N / 2 ) e. NN0 -> ( N / 2 ) e. ZZ ) | 
						
							| 25 | 24 | adantl |  |-  ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( N / 2 ) e. ZZ ) | 
						
							| 26 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 27 | 26 | adantr |  |-  ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> N e. RR ) | 
						
							| 28 |  | 2rp |  |-  2 e. RR+ | 
						
							| 29 |  | mod0 |  |-  ( ( N e. RR /\ 2 e. RR+ ) -> ( ( N mod 2 ) = 0 <-> ( N / 2 ) e. ZZ ) ) | 
						
							| 30 | 27 28 29 | sylancl |  |-  ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( ( N mod 2 ) = 0 <-> ( N / 2 ) e. ZZ ) ) | 
						
							| 31 | 25 30 | mpbird |  |-  ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( N mod 2 ) = 0 ) | 
						
							| 32 | 23 31 | eqtrd |  |-  ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( ( |_ ` N ) mod 2 ) = 0 ) | 
						
							| 33 | 18 32 | eqtrd |  |-  ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( ( |_ ` ( N / ( 2 ^ 0 ) ) ) mod 2 ) = 0 ) | 
						
							| 34 | 8 33 | eqtrd |  |-  ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( 0 ( digit ` 2 ) N ) = 0 ) |