Metamath Proof Explorer


Theorem 0dig2nn0e

Description: The last bit of an even integer is 0. (Contributed by AV, 3-Jun-2010)

Ref Expression
Assertion 0dig2nn0e N 0 N 2 0 0 digit 2 N = 0

Proof

Step Hyp Ref Expression
1 2nn 2
2 1 a1i N 0 N 2 0 2
3 0nn0 0 0
4 3 a1i N 0 N 2 0 0 0
5 nn0rp0 N 0 N 0 +∞
6 5 adantr N 0 N 2 0 N 0 +∞
7 nn0digval 2 0 0 N 0 +∞ 0 digit 2 N = N 2 0 mod 2
8 2 4 6 7 syl3anc N 0 N 2 0 0 digit 2 N = N 2 0 mod 2
9 2cn 2
10 exp0 2 2 0 = 1
11 9 10 mp1i N 0 N 2 0 2 0 = 1
12 11 oveq2d N 0 N 2 0 N 2 0 = N 1
13 nn0cn N 0 N
14 13 div1d N 0 N 1 = N
15 14 adantr N 0 N 2 0 N 1 = N
16 12 15 eqtrd N 0 N 2 0 N 2 0 = N
17 16 fveq2d N 0 N 2 0 N 2 0 = N
18 17 oveq1d N 0 N 2 0 N 2 0 mod 2 = N mod 2
19 nn0z N 0 N
20 flid N N = N
21 19 20 syl N 0 N = N
22 21 adantr N 0 N 2 0 N = N
23 22 oveq1d N 0 N 2 0 N mod 2 = N mod 2
24 nn0z N 2 0 N 2
25 24 adantl N 0 N 2 0 N 2
26 nn0re N 0 N
27 26 adantr N 0 N 2 0 N
28 2rp 2 +
29 mod0 N 2 + N mod 2 = 0 N 2
30 27 28 29 sylancl N 0 N 2 0 N mod 2 = 0 N 2
31 25 30 mpbird N 0 N 2 0 N mod 2 = 0
32 23 31 eqtrd N 0 N 2 0 N mod 2 = 0
33 18 32 eqtrd N 0 N 2 0 N 2 0 mod 2 = 0
34 8 33 eqtrd N 0 N 2 0 0 digit 2 N = 0