| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2nn |
|- 2 e. NN |
| 2 |
1
|
a1i |
|- ( ( N e. NN0 /\ K e. ZZ ) -> 2 e. NN ) |
| 3 |
|
simpr |
|- ( ( N e. NN0 /\ K e. ZZ ) -> K e. ZZ ) |
| 4 |
|
nn0rp0 |
|- ( N e. NN0 -> N e. ( 0 [,) +oo ) ) |
| 5 |
4
|
adantr |
|- ( ( N e. NN0 /\ K e. ZZ ) -> N e. ( 0 [,) +oo ) ) |
| 6 |
|
digval |
|- ( ( 2 e. NN /\ K e. ZZ /\ N e. ( 0 [,) +oo ) ) -> ( K ( digit ` 2 ) N ) = ( ( |_ ` ( ( 2 ^ -u K ) x. N ) ) mod 2 ) ) |
| 7 |
2 3 5 6
|
syl3anc |
|- ( ( N e. NN0 /\ K e. ZZ ) -> ( K ( digit ` 2 ) N ) = ( ( |_ ` ( ( 2 ^ -u K ) x. N ) ) mod 2 ) ) |
| 8 |
|
2re |
|- 2 e. RR |
| 9 |
8
|
a1i |
|- ( ( N e. NN0 /\ K e. ZZ ) -> 2 e. RR ) |
| 10 |
|
2ne0 |
|- 2 =/= 0 |
| 11 |
10
|
a1i |
|- ( ( N e. NN0 /\ K e. ZZ ) -> 2 =/= 0 ) |
| 12 |
|
znegcl |
|- ( K e. ZZ -> -u K e. ZZ ) |
| 13 |
12
|
adantl |
|- ( ( N e. NN0 /\ K e. ZZ ) -> -u K e. ZZ ) |
| 14 |
9 11 13
|
reexpclzd |
|- ( ( N e. NN0 /\ K e. ZZ ) -> ( 2 ^ -u K ) e. RR ) |
| 15 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
| 16 |
15
|
adantr |
|- ( ( N e. NN0 /\ K e. ZZ ) -> N e. RR ) |
| 17 |
14 16
|
remulcld |
|- ( ( N e. NN0 /\ K e. ZZ ) -> ( ( 2 ^ -u K ) x. N ) e. RR ) |
| 18 |
17
|
flcld |
|- ( ( N e. NN0 /\ K e. ZZ ) -> ( |_ ` ( ( 2 ^ -u K ) x. N ) ) e. ZZ ) |
| 19 |
|
elmod2 |
|- ( ( |_ ` ( ( 2 ^ -u K ) x. N ) ) e. ZZ -> ( ( |_ ` ( ( 2 ^ -u K ) x. N ) ) mod 2 ) e. { 0 , 1 } ) |
| 20 |
18 19
|
syl |
|- ( ( N e. NN0 /\ K e. ZZ ) -> ( ( |_ ` ( ( 2 ^ -u K ) x. N ) ) mod 2 ) e. { 0 , 1 } ) |
| 21 |
7 20
|
eqeltrd |
|- ( ( N e. NN0 /\ K e. ZZ ) -> ( K ( digit ` 2 ) N ) e. { 0 , 1 } ) |