| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0e0icopnf |
⊢ 0 ∈ ( 0 [,) +∞ ) |
| 2 |
|
digval |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 0 ∈ ( 0 [,) +∞ ) ) → ( 𝐾 ( digit ‘ 𝐵 ) 0 ) = ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 0 ) ) mod 𝐵 ) ) |
| 3 |
1 2
|
mp3an3 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → ( 𝐾 ( digit ‘ 𝐵 ) 0 ) = ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 0 ) ) mod 𝐵 ) ) |
| 4 |
|
nncn |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → 𝐵 ∈ ℂ ) |
| 6 |
|
nnne0 |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → 𝐵 ≠ 0 ) |
| 8 |
|
znegcl |
⊢ ( 𝐾 ∈ ℤ → - 𝐾 ∈ ℤ ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → - 𝐾 ∈ ℤ ) |
| 10 |
5 7 9
|
expclzd |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → ( 𝐵 ↑ - 𝐾 ) ∈ ℂ ) |
| 11 |
10
|
mul01d |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → ( ( 𝐵 ↑ - 𝐾 ) · 0 ) = 0 ) |
| 12 |
11
|
fveq2d |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 0 ) ) = ( ⌊ ‘ 0 ) ) |
| 13 |
|
0zd |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → 0 ∈ ℤ ) |
| 14 |
|
flid |
⊢ ( 0 ∈ ℤ → ( ⌊ ‘ 0 ) = 0 ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → ( ⌊ ‘ 0 ) = 0 ) |
| 16 |
12 15
|
eqtrd |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 0 ) ) = 0 ) |
| 17 |
16
|
oveq1d |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 0 ) ) mod 𝐵 ) = ( 0 mod 𝐵 ) ) |
| 18 |
|
nnrp |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ+ ) |
| 19 |
|
0mod |
⊢ ( 𝐵 ∈ ℝ+ → ( 0 mod 𝐵 ) = 0 ) |
| 20 |
18 19
|
syl |
⊢ ( 𝐵 ∈ ℕ → ( 0 mod 𝐵 ) = 0 ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → ( 0 mod 𝐵 ) = 0 ) |
| 22 |
17 21
|
eqtrd |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 0 ) ) mod 𝐵 ) = 0 ) |
| 23 |
3 22
|
eqtrd |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → ( 𝐾 ( digit ‘ 𝐵 ) 0 ) = 0 ) |