| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0e0icopnf | ⊢ 0  ∈  ( 0 [,) +∞ ) | 
						
							| 2 |  | digval | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ  ∧  0  ∈  ( 0 [,) +∞ ) )  →  ( 𝐾 ( digit ‘ 𝐵 ) 0 )  =  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 )  ·  0 ) )  mod  𝐵 ) ) | 
						
							| 3 | 1 2 | mp3an3 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( 𝐾 ( digit ‘ 𝐵 ) 0 )  =  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 )  ·  0 ) )  mod  𝐵 ) ) | 
						
							| 4 |  | nncn | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℂ ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  𝐵  ∈  ℂ ) | 
						
							| 6 |  | nnne0 | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ≠  0 ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  𝐵  ≠  0 ) | 
						
							| 8 |  | znegcl | ⊢ ( 𝐾  ∈  ℤ  →  - 𝐾  ∈  ℤ ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  - 𝐾  ∈  ℤ ) | 
						
							| 10 | 5 7 9 | expclzd | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( 𝐵 ↑ - 𝐾 )  ∈  ℂ ) | 
						
							| 11 | 10 | mul01d | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( ( 𝐵 ↑ - 𝐾 )  ·  0 )  =  0 ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 )  ·  0 ) )  =  ( ⌊ ‘ 0 ) ) | 
						
							| 13 |  | 0zd | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  0  ∈  ℤ ) | 
						
							| 14 |  | flid | ⊢ ( 0  ∈  ℤ  →  ( ⌊ ‘ 0 )  =  0 ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( ⌊ ‘ 0 )  =  0 ) | 
						
							| 16 | 12 15 | eqtrd | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 )  ·  0 ) )  =  0 ) | 
						
							| 17 | 16 | oveq1d | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 )  ·  0 ) )  mod  𝐵 )  =  ( 0  mod  𝐵 ) ) | 
						
							| 18 |  | nnrp | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℝ+ ) | 
						
							| 19 |  | 0mod | ⊢ ( 𝐵  ∈  ℝ+  →  ( 0  mod  𝐵 )  =  0 ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝐵  ∈  ℕ  →  ( 0  mod  𝐵 )  =  0 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( 0  mod  𝐵 )  =  0 ) | 
						
							| 22 | 17 21 | eqtrd | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 )  ·  0 ) )  mod  𝐵 )  =  0 ) | 
						
							| 23 | 3 22 | eqtrd | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( 𝐾 ( digit ‘ 𝐵 ) 0 )  =  0 ) |