Step |
Hyp |
Ref |
Expression |
1 |
|
0e0icopnf |
⊢ 0 ∈ ( 0 [,) +∞ ) |
2 |
|
digval |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 0 ∈ ( 0 [,) +∞ ) ) → ( 𝐾 ( digit ‘ 𝐵 ) 0 ) = ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 0 ) ) mod 𝐵 ) ) |
3 |
1 2
|
mp3an3 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → ( 𝐾 ( digit ‘ 𝐵 ) 0 ) = ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 0 ) ) mod 𝐵 ) ) |
4 |
|
nncn |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) |
5 |
4
|
adantr |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → 𝐵 ∈ ℂ ) |
6 |
|
nnne0 |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) |
7 |
6
|
adantr |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → 𝐵 ≠ 0 ) |
8 |
|
znegcl |
⊢ ( 𝐾 ∈ ℤ → - 𝐾 ∈ ℤ ) |
9 |
8
|
adantl |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → - 𝐾 ∈ ℤ ) |
10 |
5 7 9
|
expclzd |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → ( 𝐵 ↑ - 𝐾 ) ∈ ℂ ) |
11 |
10
|
mul01d |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → ( ( 𝐵 ↑ - 𝐾 ) · 0 ) = 0 ) |
12 |
11
|
fveq2d |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 0 ) ) = ( ⌊ ‘ 0 ) ) |
13 |
|
0zd |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → 0 ∈ ℤ ) |
14 |
|
flid |
⊢ ( 0 ∈ ℤ → ( ⌊ ‘ 0 ) = 0 ) |
15 |
13 14
|
syl |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → ( ⌊ ‘ 0 ) = 0 ) |
16 |
12 15
|
eqtrd |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 0 ) ) = 0 ) |
17 |
16
|
oveq1d |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 0 ) ) mod 𝐵 ) = ( 0 mod 𝐵 ) ) |
18 |
|
nnrp |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ+ ) |
19 |
|
0mod |
⊢ ( 𝐵 ∈ ℝ+ → ( 0 mod 𝐵 ) = 0 ) |
20 |
18 19
|
syl |
⊢ ( 𝐵 ∈ ℕ → ( 0 mod 𝐵 ) = 0 ) |
21 |
20
|
adantr |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → ( 0 mod 𝐵 ) = 0 ) |
22 |
17 21
|
eqtrd |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → ( ( ⌊ ‘ ( ( 𝐵 ↑ - 𝐾 ) · 0 ) ) mod 𝐵 ) = 0 ) |
23 |
3 22
|
eqtrd |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ) → ( 𝐾 ( digit ‘ 𝐵 ) 0 ) = 0 ) |