Step |
Hyp |
Ref |
Expression |
1 |
|
0e0icopnf |
|- 0 e. ( 0 [,) +oo ) |
2 |
|
digval |
|- ( ( B e. NN /\ K e. ZZ /\ 0 e. ( 0 [,) +oo ) ) -> ( K ( digit ` B ) 0 ) = ( ( |_ ` ( ( B ^ -u K ) x. 0 ) ) mod B ) ) |
3 |
1 2
|
mp3an3 |
|- ( ( B e. NN /\ K e. ZZ ) -> ( K ( digit ` B ) 0 ) = ( ( |_ ` ( ( B ^ -u K ) x. 0 ) ) mod B ) ) |
4 |
|
nncn |
|- ( B e. NN -> B e. CC ) |
5 |
4
|
adantr |
|- ( ( B e. NN /\ K e. ZZ ) -> B e. CC ) |
6 |
|
nnne0 |
|- ( B e. NN -> B =/= 0 ) |
7 |
6
|
adantr |
|- ( ( B e. NN /\ K e. ZZ ) -> B =/= 0 ) |
8 |
|
znegcl |
|- ( K e. ZZ -> -u K e. ZZ ) |
9 |
8
|
adantl |
|- ( ( B e. NN /\ K e. ZZ ) -> -u K e. ZZ ) |
10 |
5 7 9
|
expclzd |
|- ( ( B e. NN /\ K e. ZZ ) -> ( B ^ -u K ) e. CC ) |
11 |
10
|
mul01d |
|- ( ( B e. NN /\ K e. ZZ ) -> ( ( B ^ -u K ) x. 0 ) = 0 ) |
12 |
11
|
fveq2d |
|- ( ( B e. NN /\ K e. ZZ ) -> ( |_ ` ( ( B ^ -u K ) x. 0 ) ) = ( |_ ` 0 ) ) |
13 |
|
0zd |
|- ( ( B e. NN /\ K e. ZZ ) -> 0 e. ZZ ) |
14 |
|
flid |
|- ( 0 e. ZZ -> ( |_ ` 0 ) = 0 ) |
15 |
13 14
|
syl |
|- ( ( B e. NN /\ K e. ZZ ) -> ( |_ ` 0 ) = 0 ) |
16 |
12 15
|
eqtrd |
|- ( ( B e. NN /\ K e. ZZ ) -> ( |_ ` ( ( B ^ -u K ) x. 0 ) ) = 0 ) |
17 |
16
|
oveq1d |
|- ( ( B e. NN /\ K e. ZZ ) -> ( ( |_ ` ( ( B ^ -u K ) x. 0 ) ) mod B ) = ( 0 mod B ) ) |
18 |
|
nnrp |
|- ( B e. NN -> B e. RR+ ) |
19 |
|
0mod |
|- ( B e. RR+ -> ( 0 mod B ) = 0 ) |
20 |
18 19
|
syl |
|- ( B e. NN -> ( 0 mod B ) = 0 ) |
21 |
20
|
adantr |
|- ( ( B e. NN /\ K e. ZZ ) -> ( 0 mod B ) = 0 ) |
22 |
17 21
|
eqtrd |
|- ( ( B e. NN /\ K e. ZZ ) -> ( ( |_ ` ( ( B ^ -u K ) x. 0 ) ) mod B ) = 0 ) |
23 |
3 22
|
eqtrd |
|- ( ( B e. NN /\ K e. ZZ ) -> ( K ( digit ` B ) 0 ) = 0 ) |