| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0e0icopnf |  |-  0 e. ( 0 [,) +oo ) | 
						
							| 2 |  | digval |  |-  ( ( B e. NN /\ K e. ZZ /\ 0 e. ( 0 [,) +oo ) ) -> ( K ( digit ` B ) 0 ) = ( ( |_ ` ( ( B ^ -u K ) x. 0 ) ) mod B ) ) | 
						
							| 3 | 1 2 | mp3an3 |  |-  ( ( B e. NN /\ K e. ZZ ) -> ( K ( digit ` B ) 0 ) = ( ( |_ ` ( ( B ^ -u K ) x. 0 ) ) mod B ) ) | 
						
							| 4 |  | nncn |  |-  ( B e. NN -> B e. CC ) | 
						
							| 5 | 4 | adantr |  |-  ( ( B e. NN /\ K e. ZZ ) -> B e. CC ) | 
						
							| 6 |  | nnne0 |  |-  ( B e. NN -> B =/= 0 ) | 
						
							| 7 | 6 | adantr |  |-  ( ( B e. NN /\ K e. ZZ ) -> B =/= 0 ) | 
						
							| 8 |  | znegcl |  |-  ( K e. ZZ -> -u K e. ZZ ) | 
						
							| 9 | 8 | adantl |  |-  ( ( B e. NN /\ K e. ZZ ) -> -u K e. ZZ ) | 
						
							| 10 | 5 7 9 | expclzd |  |-  ( ( B e. NN /\ K e. ZZ ) -> ( B ^ -u K ) e. CC ) | 
						
							| 11 | 10 | mul01d |  |-  ( ( B e. NN /\ K e. ZZ ) -> ( ( B ^ -u K ) x. 0 ) = 0 ) | 
						
							| 12 | 11 | fveq2d |  |-  ( ( B e. NN /\ K e. ZZ ) -> ( |_ ` ( ( B ^ -u K ) x. 0 ) ) = ( |_ ` 0 ) ) | 
						
							| 13 |  | 0zd |  |-  ( ( B e. NN /\ K e. ZZ ) -> 0 e. ZZ ) | 
						
							| 14 |  | flid |  |-  ( 0 e. ZZ -> ( |_ ` 0 ) = 0 ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( B e. NN /\ K e. ZZ ) -> ( |_ ` 0 ) = 0 ) | 
						
							| 16 | 12 15 | eqtrd |  |-  ( ( B e. NN /\ K e. ZZ ) -> ( |_ ` ( ( B ^ -u K ) x. 0 ) ) = 0 ) | 
						
							| 17 | 16 | oveq1d |  |-  ( ( B e. NN /\ K e. ZZ ) -> ( ( |_ ` ( ( B ^ -u K ) x. 0 ) ) mod B ) = ( 0 mod B ) ) | 
						
							| 18 |  | nnrp |  |-  ( B e. NN -> B e. RR+ ) | 
						
							| 19 |  | 0mod |  |-  ( B e. RR+ -> ( 0 mod B ) = 0 ) | 
						
							| 20 | 18 19 | syl |  |-  ( B e. NN -> ( 0 mod B ) = 0 ) | 
						
							| 21 | 20 | adantr |  |-  ( ( B e. NN /\ K e. ZZ ) -> ( 0 mod B ) = 0 ) | 
						
							| 22 | 17 21 | eqtrd |  |-  ( ( B e. NN /\ K e. ZZ ) -> ( ( |_ ` ( ( B ^ -u K ) x. 0 ) ) mod B ) = 0 ) | 
						
							| 23 | 3 22 | eqtrd |  |-  ( ( B e. NN /\ K e. ZZ ) -> ( K ( digit ` B ) 0 ) = 0 ) |