Metamath Proof Explorer


Theorem dig0

Description: All digits of 0 are 0. (Contributed by AV, 24-May-2020)

Ref Expression
Assertion dig0
|- ( ( B e. NN /\ K e. ZZ ) -> ( K ( digit ` B ) 0 ) = 0 )

Proof

Step Hyp Ref Expression
1 0e0icopnf
 |-  0 e. ( 0 [,) +oo )
2 digval
 |-  ( ( B e. NN /\ K e. ZZ /\ 0 e. ( 0 [,) +oo ) ) -> ( K ( digit ` B ) 0 ) = ( ( |_ ` ( ( B ^ -u K ) x. 0 ) ) mod B ) )
3 1 2 mp3an3
 |-  ( ( B e. NN /\ K e. ZZ ) -> ( K ( digit ` B ) 0 ) = ( ( |_ ` ( ( B ^ -u K ) x. 0 ) ) mod B ) )
4 nncn
 |-  ( B e. NN -> B e. CC )
5 4 adantr
 |-  ( ( B e. NN /\ K e. ZZ ) -> B e. CC )
6 nnne0
 |-  ( B e. NN -> B =/= 0 )
7 6 adantr
 |-  ( ( B e. NN /\ K e. ZZ ) -> B =/= 0 )
8 znegcl
 |-  ( K e. ZZ -> -u K e. ZZ )
9 8 adantl
 |-  ( ( B e. NN /\ K e. ZZ ) -> -u K e. ZZ )
10 5 7 9 expclzd
 |-  ( ( B e. NN /\ K e. ZZ ) -> ( B ^ -u K ) e. CC )
11 10 mul01d
 |-  ( ( B e. NN /\ K e. ZZ ) -> ( ( B ^ -u K ) x. 0 ) = 0 )
12 11 fveq2d
 |-  ( ( B e. NN /\ K e. ZZ ) -> ( |_ ` ( ( B ^ -u K ) x. 0 ) ) = ( |_ ` 0 ) )
13 0zd
 |-  ( ( B e. NN /\ K e. ZZ ) -> 0 e. ZZ )
14 flid
 |-  ( 0 e. ZZ -> ( |_ ` 0 ) = 0 )
15 13 14 syl
 |-  ( ( B e. NN /\ K e. ZZ ) -> ( |_ ` 0 ) = 0 )
16 12 15 eqtrd
 |-  ( ( B e. NN /\ K e. ZZ ) -> ( |_ ` ( ( B ^ -u K ) x. 0 ) ) = 0 )
17 16 oveq1d
 |-  ( ( B e. NN /\ K e. ZZ ) -> ( ( |_ ` ( ( B ^ -u K ) x. 0 ) ) mod B ) = ( 0 mod B ) )
18 nnrp
 |-  ( B e. NN -> B e. RR+ )
19 0mod
 |-  ( B e. RR+ -> ( 0 mod B ) = 0 )
20 18 19 syl
 |-  ( B e. NN -> ( 0 mod B ) = 0 )
21 20 adantr
 |-  ( ( B e. NN /\ K e. ZZ ) -> ( 0 mod B ) = 0 )
22 17 21 eqtrd
 |-  ( ( B e. NN /\ K e. ZZ ) -> ( ( |_ ` ( ( B ^ -u K ) x. 0 ) ) mod B ) = 0 )
23 3 22 eqtrd
 |-  ( ( B e. NN /\ K e. ZZ ) -> ( K ( digit ` B ) 0 ) = 0 )