Metamath Proof Explorer


Theorem dig0

Description: All digits of 0 are 0. (Contributed by AV, 24-May-2020)

Ref Expression
Assertion dig0 B K K digit B 0 = 0

Proof

Step Hyp Ref Expression
1 0e0icopnf 0 0 +∞
2 digval B K 0 0 +∞ K digit B 0 = B K 0 mod B
3 1 2 mp3an3 B K K digit B 0 = B K 0 mod B
4 nncn B B
5 4 adantr B K B
6 nnne0 B B 0
7 6 adantr B K B 0
8 znegcl K K
9 8 adantl B K K
10 5 7 9 expclzd B K B K
11 10 mul01d B K B K 0 = 0
12 11 fveq2d B K B K 0 = 0
13 0zd B K 0
14 flid 0 0 = 0
15 13 14 syl B K 0 = 0
16 12 15 eqtrd B K B K 0 = 0
17 16 oveq1d B K B K 0 mod B = 0 mod B
18 nnrp B B +
19 0mod B + 0 mod B = 0
20 18 19 syl B 0 mod B = 0
21 20 adantr B K 0 mod B = 0
22 17 21 eqtrd B K B K 0 mod B = 0
23 3 22 eqtrd B K K digit B 0 = 0