Metamath Proof Explorer


Theorem dig0

Description: All digits of 0 are 0. (Contributed by AV, 24-May-2020)

Ref Expression
Assertion dig0 BKKdigitB0=0

Proof

Step Hyp Ref Expression
1 0e0icopnf 00+∞
2 digval BK00+∞KdigitB0=BK0modB
3 1 2 mp3an3 BKKdigitB0=BK0modB
4 nncn BB
5 4 adantr BKB
6 nnne0 BB0
7 6 adantr BKB0
8 znegcl KK
9 8 adantl BKK
10 5 7 9 expclzd BKBK
11 10 mul01d BKBK0=0
12 11 fveq2d BKBK0=0
13 0zd BK0
14 flid 00=0
15 13 14 syl BK0=0
16 12 15 eqtrd BKBK0=0
17 16 oveq1d BKBK0modB=0modB
18 nnrp BB+
19 0mod B+0modB=0
20 18 19 syl B0modB=0
21 20 adantr BK0modB=0
22 17 21 eqtrd BKBK0modB=0
23 3 22 eqtrd BKKdigitB0=0