Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq2 |
⊢ ( 𝑥 = 1 → ( ( #b ‘ 𝑎 ) = 𝑥 ↔ ( #b ‘ 𝑎 ) = 1 ) ) |
2 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 0 ..^ 𝑥 ) = ( 0 ..^ 1 ) ) |
3 |
|
fzo01 |
⊢ ( 0 ..^ 1 ) = { 0 } |
4 |
2 3
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( 0 ..^ 𝑥 ) = { 0 } ) |
5 |
4
|
sumeq1d |
⊢ ( 𝑥 = 1 → Σ 𝑘 ∈ ( 0 ..^ 𝑥 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) = Σ 𝑘 ∈ { 0 } ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) |
6 |
5
|
eqeq2d |
⊢ ( 𝑥 = 1 → ( 𝑎 = Σ 𝑘 ∈ ( 0 ..^ 𝑥 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ↔ 𝑎 = Σ 𝑘 ∈ { 0 } ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ) |
7 |
1 6
|
imbi12d |
⊢ ( 𝑥 = 1 → ( ( ( #b ‘ 𝑎 ) = 𝑥 → 𝑎 = Σ 𝑘 ∈ ( 0 ..^ 𝑥 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ↔ ( ( #b ‘ 𝑎 ) = 1 → 𝑎 = Σ 𝑘 ∈ { 0 } ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ) ) |
8 |
7
|
ralbidv |
⊢ ( 𝑥 = 1 → ( ∀ 𝑎 ∈ ℕ0 ( ( #b ‘ 𝑎 ) = 𝑥 → 𝑎 = Σ 𝑘 ∈ ( 0 ..^ 𝑥 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ↔ ∀ 𝑎 ∈ ℕ0 ( ( #b ‘ 𝑎 ) = 1 → 𝑎 = Σ 𝑘 ∈ { 0 } ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ) ) |
9 |
|
eqeq2 |
⊢ ( 𝑥 = 𝑦 → ( ( #b ‘ 𝑎 ) = 𝑥 ↔ ( #b ‘ 𝑎 ) = 𝑦 ) ) |
10 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 0 ..^ 𝑥 ) = ( 0 ..^ 𝑦 ) ) |
11 |
10
|
sumeq1d |
⊢ ( 𝑥 = 𝑦 → Σ 𝑘 ∈ ( 0 ..^ 𝑥 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) |
12 |
11
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑎 = Σ 𝑘 ∈ ( 0 ..^ 𝑥 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ↔ 𝑎 = Σ 𝑘 ∈ ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ) |
13 |
9 12
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( #b ‘ 𝑎 ) = 𝑥 → 𝑎 = Σ 𝑘 ∈ ( 0 ..^ 𝑥 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ↔ ( ( #b ‘ 𝑎 ) = 𝑦 → 𝑎 = Σ 𝑘 ∈ ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ) ) |
14 |
13
|
ralbidv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑎 ∈ ℕ0 ( ( #b ‘ 𝑎 ) = 𝑥 → 𝑎 = Σ 𝑘 ∈ ( 0 ..^ 𝑥 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ↔ ∀ 𝑎 ∈ ℕ0 ( ( #b ‘ 𝑎 ) = 𝑦 → 𝑎 = Σ 𝑘 ∈ ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ) ) |
15 |
|
eqeq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( #b ‘ 𝑎 ) = 𝑥 ↔ ( #b ‘ 𝑎 ) = ( 𝑦 + 1 ) ) ) |
16 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 0 ..^ 𝑥 ) = ( 0 ..^ ( 𝑦 + 1 ) ) ) |
17 |
16
|
sumeq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → Σ 𝑘 ∈ ( 0 ..^ 𝑥 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) |
18 |
17
|
eqeq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑎 = Σ 𝑘 ∈ ( 0 ..^ 𝑥 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ↔ 𝑎 = Σ 𝑘 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ) |
19 |
15 18
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( #b ‘ 𝑎 ) = 𝑥 → 𝑎 = Σ 𝑘 ∈ ( 0 ..^ 𝑥 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ↔ ( ( #b ‘ 𝑎 ) = ( 𝑦 + 1 ) → 𝑎 = Σ 𝑘 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ) ) |
20 |
19
|
ralbidv |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ∀ 𝑎 ∈ ℕ0 ( ( #b ‘ 𝑎 ) = 𝑥 → 𝑎 = Σ 𝑘 ∈ ( 0 ..^ 𝑥 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ↔ ∀ 𝑎 ∈ ℕ0 ( ( #b ‘ 𝑎 ) = ( 𝑦 + 1 ) → 𝑎 = Σ 𝑘 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ) ) |
21 |
|
eqeq2 |
⊢ ( 𝑥 = 𝐿 → ( ( #b ‘ 𝑎 ) = 𝑥 ↔ ( #b ‘ 𝑎 ) = 𝐿 ) ) |
22 |
|
oveq2 |
⊢ ( 𝑥 = 𝐿 → ( 0 ..^ 𝑥 ) = ( 0 ..^ 𝐿 ) ) |
23 |
22
|
sumeq1d |
⊢ ( 𝑥 = 𝐿 → Σ 𝑘 ∈ ( 0 ..^ 𝑥 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ..^ 𝐿 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) |
24 |
23
|
eqeq2d |
⊢ ( 𝑥 = 𝐿 → ( 𝑎 = Σ 𝑘 ∈ ( 0 ..^ 𝑥 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ↔ 𝑎 = Σ 𝑘 ∈ ( 0 ..^ 𝐿 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ) |
25 |
21 24
|
imbi12d |
⊢ ( 𝑥 = 𝐿 → ( ( ( #b ‘ 𝑎 ) = 𝑥 → 𝑎 = Σ 𝑘 ∈ ( 0 ..^ 𝑥 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ↔ ( ( #b ‘ 𝑎 ) = 𝐿 → 𝑎 = Σ 𝑘 ∈ ( 0 ..^ 𝐿 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ) ) |
26 |
25
|
ralbidv |
⊢ ( 𝑥 = 𝐿 → ( ∀ 𝑎 ∈ ℕ0 ( ( #b ‘ 𝑎 ) = 𝑥 → 𝑎 = Σ 𝑘 ∈ ( 0 ..^ 𝑥 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ↔ ∀ 𝑎 ∈ ℕ0 ( ( #b ‘ 𝑎 ) = 𝐿 → 𝑎 = Σ 𝑘 ∈ ( 0 ..^ 𝐿 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ) ) |
27 |
|
0cnd |
⊢ ( 𝑎 ∈ ℕ0 → 0 ∈ ℂ ) |
28 |
|
2nn |
⊢ 2 ∈ ℕ |
29 |
28
|
a1i |
⊢ ( 𝑎 ∈ ℕ0 → 2 ∈ ℕ ) |
30 |
|
0zd |
⊢ ( 𝑎 ∈ ℕ0 → 0 ∈ ℤ ) |
31 |
|
nn0rp0 |
⊢ ( 𝑎 ∈ ℕ0 → 𝑎 ∈ ( 0 [,) +∞ ) ) |
32 |
|
digvalnn0 |
⊢ ( ( 2 ∈ ℕ ∧ 0 ∈ ℤ ∧ 𝑎 ∈ ( 0 [,) +∞ ) ) → ( 0 ( digit ‘ 2 ) 𝑎 ) ∈ ℕ0 ) |
33 |
29 30 31 32
|
syl3anc |
⊢ ( 𝑎 ∈ ℕ0 → ( 0 ( digit ‘ 2 ) 𝑎 ) ∈ ℕ0 ) |
34 |
33
|
nn0cnd |
⊢ ( 𝑎 ∈ ℕ0 → ( 0 ( digit ‘ 2 ) 𝑎 ) ∈ ℂ ) |
35 |
|
1cnd |
⊢ ( 𝑎 ∈ ℕ0 → 1 ∈ ℂ ) |
36 |
34 35
|
mulcld |
⊢ ( 𝑎 ∈ ℕ0 → ( ( 0 ( digit ‘ 2 ) 𝑎 ) · 1 ) ∈ ℂ ) |
37 |
27 36
|
jca |
⊢ ( 𝑎 ∈ ℕ0 → ( 0 ∈ ℂ ∧ ( ( 0 ( digit ‘ 2 ) 𝑎 ) · 1 ) ∈ ℂ ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ ( #b ‘ 𝑎 ) = 1 ) → ( 0 ∈ ℂ ∧ ( ( 0 ( digit ‘ 2 ) 𝑎 ) · 1 ) ∈ ℂ ) ) |
39 |
|
oveq1 |
⊢ ( 𝑘 = 0 → ( 𝑘 ( digit ‘ 2 ) 𝑎 ) = ( 0 ( digit ‘ 2 ) 𝑎 ) ) |
40 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 2 ↑ 𝑘 ) = ( 2 ↑ 0 ) ) |
41 |
|
2cn |
⊢ 2 ∈ ℂ |
42 |
|
exp0 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ 0 ) = 1 ) |
43 |
41 42
|
ax-mp |
⊢ ( 2 ↑ 0 ) = 1 |
44 |
40 43
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( 2 ↑ 𝑘 ) = 1 ) |
45 |
39 44
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) = ( ( 0 ( digit ‘ 2 ) 𝑎 ) · 1 ) ) |
46 |
45
|
sumsn |
⊢ ( ( 0 ∈ ℂ ∧ ( ( 0 ( digit ‘ 2 ) 𝑎 ) · 1 ) ∈ ℂ ) → Σ 𝑘 ∈ { 0 } ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) = ( ( 0 ( digit ‘ 2 ) 𝑎 ) · 1 ) ) |
47 |
38 46
|
syl |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ ( #b ‘ 𝑎 ) = 1 ) → Σ 𝑘 ∈ { 0 } ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) = ( ( 0 ( digit ‘ 2 ) 𝑎 ) · 1 ) ) |
48 |
34
|
adantr |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ ( #b ‘ 𝑎 ) = 1 ) → ( 0 ( digit ‘ 2 ) 𝑎 ) ∈ ℂ ) |
49 |
48
|
mulid1d |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ ( #b ‘ 𝑎 ) = 1 ) → ( ( 0 ( digit ‘ 2 ) 𝑎 ) · 1 ) = ( 0 ( digit ‘ 2 ) 𝑎 ) ) |
50 |
|
blen1b |
⊢ ( 𝑎 ∈ ℕ0 → ( ( #b ‘ 𝑎 ) = 1 ↔ ( 𝑎 = 0 ∨ 𝑎 = 1 ) ) ) |
51 |
50
|
biimpa |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ ( #b ‘ 𝑎 ) = 1 ) → ( 𝑎 = 0 ∨ 𝑎 = 1 ) ) |
52 |
|
vex |
⊢ 𝑎 ∈ V |
53 |
52
|
elpr |
⊢ ( 𝑎 ∈ { 0 , 1 } ↔ ( 𝑎 = 0 ∨ 𝑎 = 1 ) ) |
54 |
51 53
|
sylibr |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ ( #b ‘ 𝑎 ) = 1 ) → 𝑎 ∈ { 0 , 1 } ) |
55 |
|
0dig2pr01 |
⊢ ( 𝑎 ∈ { 0 , 1 } → ( 0 ( digit ‘ 2 ) 𝑎 ) = 𝑎 ) |
56 |
54 55
|
syl |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ ( #b ‘ 𝑎 ) = 1 ) → ( 0 ( digit ‘ 2 ) 𝑎 ) = 𝑎 ) |
57 |
47 49 56
|
3eqtrrd |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ ( #b ‘ 𝑎 ) = 1 ) → 𝑎 = Σ 𝑘 ∈ { 0 } ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) |
58 |
57
|
ex |
⊢ ( 𝑎 ∈ ℕ0 → ( ( #b ‘ 𝑎 ) = 1 → 𝑎 = Σ 𝑘 ∈ { 0 } ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ) |
59 |
58
|
rgen |
⊢ ∀ 𝑎 ∈ ℕ0 ( ( #b ‘ 𝑎 ) = 1 → 𝑎 = Σ 𝑘 ∈ { 0 } ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) |
60 |
|
nn0sumshdiglem1 |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑎 ∈ ℕ0 ( ( #b ‘ 𝑎 ) = 𝑦 → 𝑎 = Σ 𝑘 ∈ ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) → ∀ 𝑎 ∈ ℕ0 ( ( #b ‘ 𝑎 ) = ( 𝑦 + 1 ) → 𝑎 = Σ 𝑘 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ) ) |
61 |
8 14 20 26 59 60
|
nnind |
⊢ ( 𝐿 ∈ ℕ → ∀ 𝑎 ∈ ℕ0 ( ( #b ‘ 𝑎 ) = 𝐿 → 𝑎 = Σ 𝑘 ∈ ( 0 ..^ 𝐿 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 ) · ( 2 ↑ 𝑘 ) ) ) ) |