| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveqeq2 | ⊢ ( 𝑎  =  𝑥  →  ( ( #b ‘ 𝑎 )  =  𝑦  ↔  ( #b ‘ 𝑥 )  =  𝑦 ) ) | 
						
							| 2 |  | id | ⊢ ( 𝑎  =  𝑥  →  𝑎  =  𝑥 ) | 
						
							| 3 |  | oveq2 | ⊢ ( 𝑎  =  𝑥  →  ( 𝑘 ( digit ‘ 2 ) 𝑎 )  =  ( 𝑘 ( digit ‘ 2 ) 𝑥 ) ) | 
						
							| 4 | 3 | oveq1d | ⊢ ( 𝑎  =  𝑥  →  ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) )  =  ( ( 𝑘 ( digit ‘ 2 ) 𝑥 )  ·  ( 2 ↑ 𝑘 ) ) ) | 
						
							| 5 | 4 | sumeq2sdv | ⊢ ( 𝑎  =  𝑥  →  Σ 𝑘  ∈  ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑥 )  ·  ( 2 ↑ 𝑘 ) ) ) | 
						
							| 6 | 2 5 | eqeq12d | ⊢ ( 𝑎  =  𝑥  →  ( 𝑎  =  Σ 𝑘  ∈  ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) )  ↔  𝑥  =  Σ 𝑘  ∈  ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑥 )  ·  ( 2 ↑ 𝑘 ) ) ) ) | 
						
							| 7 | 1 6 | imbi12d | ⊢ ( 𝑎  =  𝑥  →  ( ( ( #b ‘ 𝑎 )  =  𝑦  →  𝑎  =  Σ 𝑘  ∈  ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) ) )  ↔  ( ( #b ‘ 𝑥 )  =  𝑦  →  𝑥  =  Σ 𝑘  ∈  ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑥 )  ·  ( 2 ↑ 𝑘 ) ) ) ) ) | 
						
							| 8 | 7 | cbvralvw | ⊢ ( ∀ 𝑎  ∈  ℕ0 ( ( #b ‘ 𝑎 )  =  𝑦  →  𝑎  =  Σ 𝑘  ∈  ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) ) )  ↔  ∀ 𝑥  ∈  ℕ0 ( ( #b ‘ 𝑥 )  =  𝑦  →  𝑥  =  Σ 𝑘  ∈  ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑥 )  ·  ( 2 ↑ 𝑘 ) ) ) ) | 
						
							| 9 |  | elnn0 | ⊢ ( 𝑎  ∈  ℕ0  ↔  ( 𝑎  ∈  ℕ  ∨  𝑎  =  0 ) ) | 
						
							| 10 |  | nn0sumshdiglemA | ⊢ ( ( ( 𝑎  ∈  ℕ  ∧  ( 𝑎  /  2 )  ∈  ℕ )  ∧  𝑦  ∈  ℕ )  →  ( ∀ 𝑥  ∈  ℕ0 ( ( #b ‘ 𝑥 )  =  𝑦  →  𝑥  =  Σ 𝑘  ∈  ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑥 )  ·  ( 2 ↑ 𝑘 ) ) )  →  ( ( #b ‘ 𝑎 )  =  ( 𝑦  +  1 )  →  𝑎  =  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) ) ) ) ) | 
						
							| 11 | 10 | expimpd | ⊢ ( ( 𝑎  ∈  ℕ  ∧  ( 𝑎  /  2 )  ∈  ℕ )  →  ( ( 𝑦  ∈  ℕ  ∧  ∀ 𝑥  ∈  ℕ0 ( ( #b ‘ 𝑥 )  =  𝑦  →  𝑥  =  Σ 𝑘  ∈  ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑥 )  ·  ( 2 ↑ 𝑘 ) ) ) )  →  ( ( #b ‘ 𝑎 )  =  ( 𝑦  +  1 )  →  𝑎  =  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) ) ) ) ) | 
						
							| 12 |  | nn0sumshdiglemB | ⊢ ( ( ( 𝑎  ∈  ℕ  ∧  ( ( 𝑎  −  1 )  /  2 )  ∈  ℕ0 )  ∧  𝑦  ∈  ℕ )  →  ( ∀ 𝑥  ∈  ℕ0 ( ( #b ‘ 𝑥 )  =  𝑦  →  𝑥  =  Σ 𝑘  ∈  ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑥 )  ·  ( 2 ↑ 𝑘 ) ) )  →  ( ( #b ‘ 𝑎 )  =  ( 𝑦  +  1 )  →  𝑎  =  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) ) ) ) ) | 
						
							| 13 | 12 | expimpd | ⊢ ( ( 𝑎  ∈  ℕ  ∧  ( ( 𝑎  −  1 )  /  2 )  ∈  ℕ0 )  →  ( ( 𝑦  ∈  ℕ  ∧  ∀ 𝑥  ∈  ℕ0 ( ( #b ‘ 𝑥 )  =  𝑦  →  𝑥  =  Σ 𝑘  ∈  ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑥 )  ·  ( 2 ↑ 𝑘 ) ) ) )  →  ( ( #b ‘ 𝑎 )  =  ( 𝑦  +  1 )  →  𝑎  =  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) ) ) ) ) | 
						
							| 14 |  | nneom | ⊢ ( 𝑎  ∈  ℕ  →  ( ( 𝑎  /  2 )  ∈  ℕ  ∨  ( ( 𝑎  −  1 )  /  2 )  ∈  ℕ0 ) ) | 
						
							| 15 | 11 13 14 | mpjaodan | ⊢ ( 𝑎  ∈  ℕ  →  ( ( 𝑦  ∈  ℕ  ∧  ∀ 𝑥  ∈  ℕ0 ( ( #b ‘ 𝑥 )  =  𝑦  →  𝑥  =  Σ 𝑘  ∈  ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑥 )  ·  ( 2 ↑ 𝑘 ) ) ) )  →  ( ( #b ‘ 𝑎 )  =  ( 𝑦  +  1 )  →  𝑎  =  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) ) ) ) ) | 
						
							| 16 |  | eqcom | ⊢ ( 1  =  ( 𝑦  +  1 )  ↔  ( 𝑦  +  1 )  =  1 ) | 
						
							| 17 | 16 | a1i | ⊢ ( 𝑦  ∈  ℕ  →  ( 1  =  ( 𝑦  +  1 )  ↔  ( 𝑦  +  1 )  =  1 ) ) | 
						
							| 18 |  | nncn | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℂ ) | 
						
							| 19 |  | 1cnd | ⊢ ( 𝑦  ∈  ℕ  →  1  ∈  ℂ ) | 
						
							| 20 | 18 19 19 | addlsub | ⊢ ( 𝑦  ∈  ℕ  →  ( ( 𝑦  +  1 )  =  1  ↔  𝑦  =  ( 1  −  1 ) ) ) | 
						
							| 21 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 22 | 21 | a1i | ⊢ ( 𝑦  ∈  ℕ  →  ( 1  −  1 )  =  0 ) | 
						
							| 23 | 22 | eqeq2d | ⊢ ( 𝑦  ∈  ℕ  →  ( 𝑦  =  ( 1  −  1 )  ↔  𝑦  =  0 ) ) | 
						
							| 24 | 17 20 23 | 3bitrd | ⊢ ( 𝑦  ∈  ℕ  →  ( 1  =  ( 𝑦  +  1 )  ↔  𝑦  =  0 ) ) | 
						
							| 25 |  | oveq1 | ⊢ ( 𝑦  =  0  →  ( 𝑦  +  1 )  =  ( 0  +  1 ) ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( 𝑦  =  0  →  ( 0 ..^ ( 𝑦  +  1 ) )  =  ( 0 ..^ ( 0  +  1 ) ) ) | 
						
							| 27 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 28 | 27 | oveq2i | ⊢ ( 0 ..^ ( 0  +  1 ) )  =  ( 0 ..^ 1 ) | 
						
							| 29 |  | fzo01 | ⊢ ( 0 ..^ 1 )  =  { 0 } | 
						
							| 30 | 28 29 | eqtri | ⊢ ( 0 ..^ ( 0  +  1 ) )  =  { 0 } | 
						
							| 31 | 26 30 | eqtrdi | ⊢ ( 𝑦  =  0  →  ( 0 ..^ ( 𝑦  +  1 ) )  =  { 0 } ) | 
						
							| 32 | 31 | sumeq1d | ⊢ ( 𝑦  =  0  →  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 0 )  ·  ( 2 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  { 0 } ( ( 𝑘 ( digit ‘ 2 ) 0 )  ·  ( 2 ↑ 𝑘 ) ) ) | 
						
							| 33 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 34 |  | oveq1 | ⊢ ( 𝑘  =  0  →  ( 𝑘 ( digit ‘ 2 ) 0 )  =  ( 0 ( digit ‘ 2 ) 0 ) ) | 
						
							| 35 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 36 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 37 |  | dig0 | ⊢ ( ( 2  ∈  ℕ  ∧  0  ∈  ℤ )  →  ( 0 ( digit ‘ 2 ) 0 )  =  0 ) | 
						
							| 38 | 35 36 37 | mp2an | ⊢ ( 0 ( digit ‘ 2 ) 0 )  =  0 | 
						
							| 39 | 34 38 | eqtrdi | ⊢ ( 𝑘  =  0  →  ( 𝑘 ( digit ‘ 2 ) 0 )  =  0 ) | 
						
							| 40 |  | oveq2 | ⊢ ( 𝑘  =  0  →  ( 2 ↑ 𝑘 )  =  ( 2 ↑ 0 ) ) | 
						
							| 41 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 42 |  | exp0 | ⊢ ( 2  ∈  ℂ  →  ( 2 ↑ 0 )  =  1 ) | 
						
							| 43 | 41 42 | ax-mp | ⊢ ( 2 ↑ 0 )  =  1 | 
						
							| 44 | 40 43 | eqtrdi | ⊢ ( 𝑘  =  0  →  ( 2 ↑ 𝑘 )  =  1 ) | 
						
							| 45 | 39 44 | oveq12d | ⊢ ( 𝑘  =  0  →  ( ( 𝑘 ( digit ‘ 2 ) 0 )  ·  ( 2 ↑ 𝑘 ) )  =  ( 0  ·  1 ) ) | 
						
							| 46 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 47 |  | mul02lem2 | ⊢ ( 1  ∈  ℝ  →  ( 0  ·  1 )  =  0 ) | 
						
							| 48 | 46 47 | ax-mp | ⊢ ( 0  ·  1 )  =  0 | 
						
							| 49 | 45 48 | eqtrdi | ⊢ ( 𝑘  =  0  →  ( ( 𝑘 ( digit ‘ 2 ) 0 )  ·  ( 2 ↑ 𝑘 ) )  =  0 ) | 
						
							| 50 | 49 | sumsn | ⊢ ( ( 0  ∈  ℂ  ∧  0  ∈  ℂ )  →  Σ 𝑘  ∈  { 0 } ( ( 𝑘 ( digit ‘ 2 ) 0 )  ·  ( 2 ↑ 𝑘 ) )  =  0 ) | 
						
							| 51 | 33 33 50 | mp2an | ⊢ Σ 𝑘  ∈  { 0 } ( ( 𝑘 ( digit ‘ 2 ) 0 )  ·  ( 2 ↑ 𝑘 ) )  =  0 | 
						
							| 52 | 32 51 | eqtr2di | ⊢ ( 𝑦  =  0  →  0  =  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 0 )  ·  ( 2 ↑ 𝑘 ) ) ) | 
						
							| 53 | 24 52 | biimtrdi | ⊢ ( 𝑦  ∈  ℕ  →  ( 1  =  ( 𝑦  +  1 )  →  0  =  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 0 )  ·  ( 2 ↑ 𝑘 ) ) ) ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( 𝑎  =  0  ∧  𝑦  ∈  ℕ )  →  ( 1  =  ( 𝑦  +  1 )  →  0  =  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 0 )  ·  ( 2 ↑ 𝑘 ) ) ) ) | 
						
							| 55 |  | fveq2 | ⊢ ( 𝑎  =  0  →  ( #b ‘ 𝑎 )  =  ( #b ‘ 0 ) ) | 
						
							| 56 |  | blen0 | ⊢ ( #b ‘ 0 )  =  1 | 
						
							| 57 | 55 56 | eqtrdi | ⊢ ( 𝑎  =  0  →  ( #b ‘ 𝑎 )  =  1 ) | 
						
							| 58 | 57 | eqeq1d | ⊢ ( 𝑎  =  0  →  ( ( #b ‘ 𝑎 )  =  ( 𝑦  +  1 )  ↔  1  =  ( 𝑦  +  1 ) ) ) | 
						
							| 59 |  | id | ⊢ ( 𝑎  =  0  →  𝑎  =  0 ) | 
						
							| 60 |  | oveq2 | ⊢ ( 𝑎  =  0  →  ( 𝑘 ( digit ‘ 2 ) 𝑎 )  =  ( 𝑘 ( digit ‘ 2 ) 0 ) ) | 
						
							| 61 | 60 | oveq1d | ⊢ ( 𝑎  =  0  →  ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) )  =  ( ( 𝑘 ( digit ‘ 2 ) 0 )  ·  ( 2 ↑ 𝑘 ) ) ) | 
						
							| 62 | 61 | sumeq2sdv | ⊢ ( 𝑎  =  0  →  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 0 )  ·  ( 2 ↑ 𝑘 ) ) ) | 
						
							| 63 | 59 62 | eqeq12d | ⊢ ( 𝑎  =  0  →  ( 𝑎  =  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) )  ↔  0  =  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 0 )  ·  ( 2 ↑ 𝑘 ) ) ) ) | 
						
							| 64 | 58 63 | imbi12d | ⊢ ( 𝑎  =  0  →  ( ( ( #b ‘ 𝑎 )  =  ( 𝑦  +  1 )  →  𝑎  =  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) ) )  ↔  ( 1  =  ( 𝑦  +  1 )  →  0  =  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 0 )  ·  ( 2 ↑ 𝑘 ) ) ) ) ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( 𝑎  =  0  ∧  𝑦  ∈  ℕ )  →  ( ( ( #b ‘ 𝑎 )  =  ( 𝑦  +  1 )  →  𝑎  =  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) ) )  ↔  ( 1  =  ( 𝑦  +  1 )  →  0  =  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 0 )  ·  ( 2 ↑ 𝑘 ) ) ) ) ) | 
						
							| 66 | 54 65 | mpbird | ⊢ ( ( 𝑎  =  0  ∧  𝑦  ∈  ℕ )  →  ( ( #b ‘ 𝑎 )  =  ( 𝑦  +  1 )  →  𝑎  =  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) ) ) ) | 
						
							| 67 | 66 | a1d | ⊢ ( ( 𝑎  =  0  ∧  𝑦  ∈  ℕ )  →  ( ∀ 𝑥  ∈  ℕ0 ( ( #b ‘ 𝑥 )  =  𝑦  →  𝑥  =  Σ 𝑘  ∈  ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑥 )  ·  ( 2 ↑ 𝑘 ) ) )  →  ( ( #b ‘ 𝑎 )  =  ( 𝑦  +  1 )  →  𝑎  =  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) ) ) ) ) | 
						
							| 68 | 67 | expimpd | ⊢ ( 𝑎  =  0  →  ( ( 𝑦  ∈  ℕ  ∧  ∀ 𝑥  ∈  ℕ0 ( ( #b ‘ 𝑥 )  =  𝑦  →  𝑥  =  Σ 𝑘  ∈  ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑥 )  ·  ( 2 ↑ 𝑘 ) ) ) )  →  ( ( #b ‘ 𝑎 )  =  ( 𝑦  +  1 )  →  𝑎  =  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) ) ) ) ) | 
						
							| 69 | 15 68 | jaoi | ⊢ ( ( 𝑎  ∈  ℕ  ∨  𝑎  =  0 )  →  ( ( 𝑦  ∈  ℕ  ∧  ∀ 𝑥  ∈  ℕ0 ( ( #b ‘ 𝑥 )  =  𝑦  →  𝑥  =  Σ 𝑘  ∈  ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑥 )  ·  ( 2 ↑ 𝑘 ) ) ) )  →  ( ( #b ‘ 𝑎 )  =  ( 𝑦  +  1 )  →  𝑎  =  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) ) ) ) ) | 
						
							| 70 | 9 69 | sylbi | ⊢ ( 𝑎  ∈  ℕ0  →  ( ( 𝑦  ∈  ℕ  ∧  ∀ 𝑥  ∈  ℕ0 ( ( #b ‘ 𝑥 )  =  𝑦  →  𝑥  =  Σ 𝑘  ∈  ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑥 )  ·  ( 2 ↑ 𝑘 ) ) ) )  →  ( ( #b ‘ 𝑎 )  =  ( 𝑦  +  1 )  →  𝑎  =  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) ) ) ) ) | 
						
							| 71 | 70 | com12 | ⊢ ( ( 𝑦  ∈  ℕ  ∧  ∀ 𝑥  ∈  ℕ0 ( ( #b ‘ 𝑥 )  =  𝑦  →  𝑥  =  Σ 𝑘  ∈  ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑥 )  ·  ( 2 ↑ 𝑘 ) ) ) )  →  ( 𝑎  ∈  ℕ0  →  ( ( #b ‘ 𝑎 )  =  ( 𝑦  +  1 )  →  𝑎  =  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) ) ) ) ) | 
						
							| 72 | 71 | ralrimiv | ⊢ ( ( 𝑦  ∈  ℕ  ∧  ∀ 𝑥  ∈  ℕ0 ( ( #b ‘ 𝑥 )  =  𝑦  →  𝑥  =  Σ 𝑘  ∈  ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑥 )  ·  ( 2 ↑ 𝑘 ) ) ) )  →  ∀ 𝑎  ∈  ℕ0 ( ( #b ‘ 𝑎 )  =  ( 𝑦  +  1 )  →  𝑎  =  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) ) ) ) | 
						
							| 73 | 72 | ex | ⊢ ( 𝑦  ∈  ℕ  →  ( ∀ 𝑥  ∈  ℕ0 ( ( #b ‘ 𝑥 )  =  𝑦  →  𝑥  =  Σ 𝑘  ∈  ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑥 )  ·  ( 2 ↑ 𝑘 ) ) )  →  ∀ 𝑎  ∈  ℕ0 ( ( #b ‘ 𝑎 )  =  ( 𝑦  +  1 )  →  𝑎  =  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) ) ) ) ) | 
						
							| 74 | 8 73 | biimtrid | ⊢ ( 𝑦  ∈  ℕ  →  ( ∀ 𝑎  ∈  ℕ0 ( ( #b ‘ 𝑎 )  =  𝑦  →  𝑎  =  Σ 𝑘  ∈  ( 0 ..^ 𝑦 ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) ) )  →  ∀ 𝑎  ∈  ℕ0 ( ( #b ‘ 𝑎 )  =  ( 𝑦  +  1 )  →  𝑎  =  Σ 𝑘  ∈  ( 0 ..^ ( 𝑦  +  1 ) ) ( ( 𝑘 ( digit ‘ 2 ) 𝑎 )  ·  ( 2 ↑ 𝑘 ) ) ) ) ) |