Step |
Hyp |
Ref |
Expression |
1 |
|
fveqeq2 |
|
2 |
|
id |
|
3 |
|
oveq2 |
|
4 |
3
|
oveq1d |
|
5 |
4
|
sumeq2sdv |
|
6 |
2 5
|
eqeq12d |
|
7 |
1 6
|
imbi12d |
|
8 |
7
|
cbvralvw |
|
9 |
|
elnn0 |
|
10 |
|
nn0sumshdiglemA |
|
11 |
10
|
expimpd |
|
12 |
|
nn0sumshdiglemB |
|
13 |
12
|
expimpd |
|
14 |
|
nneom |
|
15 |
11 13 14
|
mpjaodan |
|
16 |
|
eqcom |
|
17 |
16
|
a1i |
|
18 |
|
nncn |
|
19 |
|
1cnd |
|
20 |
18 19 19
|
addlsub |
|
21 |
|
1m1e0 |
|
22 |
21
|
a1i |
|
23 |
22
|
eqeq2d |
|
24 |
17 20 23
|
3bitrd |
|
25 |
|
oveq1 |
|
26 |
25
|
oveq2d |
|
27 |
|
0p1e1 |
|
28 |
27
|
oveq2i |
|
29 |
|
fzo01 |
|
30 |
28 29
|
eqtri |
|
31 |
26 30
|
eqtrdi |
|
32 |
31
|
sumeq1d |
|
33 |
|
0cn |
|
34 |
|
oveq1 |
|
35 |
|
2nn |
|
36 |
|
0z |
|
37 |
|
dig0 |
|
38 |
35 36 37
|
mp2an |
|
39 |
34 38
|
eqtrdi |
|
40 |
|
oveq2 |
|
41 |
|
2cn |
|
42 |
|
exp0 |
|
43 |
41 42
|
ax-mp |
|
44 |
40 43
|
eqtrdi |
|
45 |
39 44
|
oveq12d |
|
46 |
|
1re |
|
47 |
|
mul02lem2 |
|
48 |
46 47
|
ax-mp |
|
49 |
45 48
|
eqtrdi |
|
50 |
49
|
sumsn |
|
51 |
33 33 50
|
mp2an |
|
52 |
32 51
|
eqtr2di |
|
53 |
24 52
|
syl6bi |
|
54 |
53
|
adantl |
|
55 |
|
fveq2 |
|
56 |
|
blen0 |
|
57 |
55 56
|
eqtrdi |
|
58 |
57
|
eqeq1d |
|
59 |
|
id |
|
60 |
|
oveq2 |
|
61 |
60
|
oveq1d |
|
62 |
61
|
sumeq2sdv |
|
63 |
59 62
|
eqeq12d |
|
64 |
58 63
|
imbi12d |
|
65 |
64
|
adantr |
|
66 |
54 65
|
mpbird |
|
67 |
66
|
a1d |
|
68 |
67
|
expimpd |
|
69 |
15 68
|
jaoi |
|
70 |
9 69
|
sylbi |
|
71 |
70
|
com12 |
|
72 |
71
|
ralrimiv |
|
73 |
72
|
ex |
|
74 |
8 73
|
syl5bi |
|