| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq2 |
|
| 2 |
|
oveq2 |
|
| 3 |
|
fzo01 |
|
| 4 |
2 3
|
eqtrdi |
|
| 5 |
4
|
sumeq1d |
|
| 6 |
5
|
eqeq2d |
|
| 7 |
1 6
|
imbi12d |
|
| 8 |
7
|
ralbidv |
|
| 9 |
|
eqeq2 |
|
| 10 |
|
oveq2 |
|
| 11 |
10
|
sumeq1d |
|
| 12 |
11
|
eqeq2d |
|
| 13 |
9 12
|
imbi12d |
|
| 14 |
13
|
ralbidv |
|
| 15 |
|
eqeq2 |
|
| 16 |
|
oveq2 |
|
| 17 |
16
|
sumeq1d |
|
| 18 |
17
|
eqeq2d |
|
| 19 |
15 18
|
imbi12d |
|
| 20 |
19
|
ralbidv |
|
| 21 |
|
eqeq2 |
|
| 22 |
|
oveq2 |
|
| 23 |
22
|
sumeq1d |
|
| 24 |
23
|
eqeq2d |
|
| 25 |
21 24
|
imbi12d |
|
| 26 |
25
|
ralbidv |
|
| 27 |
|
0cnd |
|
| 28 |
|
2nn |
|
| 29 |
28
|
a1i |
|
| 30 |
|
0zd |
|
| 31 |
|
nn0rp0 |
|
| 32 |
|
digvalnn0 |
|
| 33 |
29 30 31 32
|
syl3anc |
|
| 34 |
33
|
nn0cnd |
|
| 35 |
|
1cnd |
|
| 36 |
34 35
|
mulcld |
|
| 37 |
27 36
|
jca |
|
| 38 |
37
|
adantr |
|
| 39 |
|
oveq1 |
|
| 40 |
|
oveq2 |
|
| 41 |
|
2cn |
|
| 42 |
|
exp0 |
|
| 43 |
41 42
|
ax-mp |
|
| 44 |
40 43
|
eqtrdi |
|
| 45 |
39 44
|
oveq12d |
|
| 46 |
45
|
sumsn |
|
| 47 |
38 46
|
syl |
|
| 48 |
34
|
adantr |
|
| 49 |
48
|
mulridd |
|
| 50 |
|
blen1b |
|
| 51 |
50
|
biimpa |
|
| 52 |
|
vex |
|
| 53 |
52
|
elpr |
|
| 54 |
51 53
|
sylibr |
|
| 55 |
|
0dig2pr01 |
|
| 56 |
54 55
|
syl |
|
| 57 |
47 49 56
|
3eqtrrd |
|
| 58 |
57
|
ex |
|
| 59 |
58
|
rgen |
|
| 60 |
|
nn0sumshdiglem1 |
|
| 61 |
8 14 20 26 59 60
|
nnind |
|