| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nneop |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / 2 ) ∈ ℕ ∨ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ) ) |
| 2 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 3 |
|
nnnn0 |
⊢ ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ → ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) |
| 4 |
|
nn0o |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) → ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 ) |
| 5 |
2 3 4
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ) → ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 ) |
| 6 |
5
|
ex |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ → ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 ) ) |
| 7 |
6
|
orim2d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 / 2 ) ∈ ℕ ∨ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ) → ( ( 𝑁 / 2 ) ∈ ℕ ∨ ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 ) ) ) |
| 8 |
1 7
|
mpd |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / 2 ) ∈ ℕ ∨ ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 ) ) |