| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nneop | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  /  2 )  ∈  ℕ  ∨  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ ) ) | 
						
							| 2 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 3 |  | nnnn0 | ⊢ ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ  →  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 ) | 
						
							| 4 |  | nn0o | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( ( 𝑁  −  1 )  /  2 )  ∈  ℕ0 ) | 
						
							| 5 | 2 3 4 | syl2an | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ )  →  ( ( 𝑁  −  1 )  /  2 )  ∈  ℕ0 ) | 
						
							| 6 | 5 | ex | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ  →  ( ( 𝑁  −  1 )  /  2 )  ∈  ℕ0 ) ) | 
						
							| 7 | 6 | orim2d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( 𝑁  /  2 )  ∈  ℕ  ∨  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ )  →  ( ( 𝑁  /  2 )  ∈  ℕ  ∨  ( ( 𝑁  −  1 )  /  2 )  ∈  ℕ0 ) ) ) | 
						
							| 8 | 1 7 | mpd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  /  2 )  ∈  ℕ  ∨  ( ( 𝑁  −  1 )  /  2 )  ∈  ℕ0 ) ) |