Step |
Hyp |
Ref |
Expression |
1 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
2 |
|
zeo |
⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 / 2 ) ∈ ℤ ∨ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
3 |
1 2
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 / 2 ) ∈ ℤ ∨ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
4 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 / 2 ) ∈ ℤ ) → ( 𝑁 / 2 ) ∈ ℤ ) |
5 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
6 |
|
nn0ge0 |
⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) |
7 |
|
2re |
⊢ 2 ∈ ℝ |
8 |
7
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℝ ) |
9 |
|
2pos |
⊢ 0 < 2 |
10 |
9
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 0 < 2 ) |
11 |
|
divge0 |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ 0 ≤ 𝑁 ) ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → 0 ≤ ( 𝑁 / 2 ) ) |
12 |
5 6 8 10 11
|
syl22anc |
⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ ( 𝑁 / 2 ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 / 2 ) ∈ ℤ ) → 0 ≤ ( 𝑁 / 2 ) ) |
14 |
|
elnn0z |
⊢ ( ( 𝑁 / 2 ) ∈ ℕ0 ↔ ( ( 𝑁 / 2 ) ∈ ℤ ∧ 0 ≤ ( 𝑁 / 2 ) ) ) |
15 |
4 13 14
|
sylanbrc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 / 2 ) ∈ ℤ ) → ( 𝑁 / 2 ) ∈ ℕ0 ) |
16 |
15
|
ex |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 / 2 ) ∈ ℤ → ( 𝑁 / 2 ) ∈ ℕ0 ) ) |
17 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) → ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) |
18 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
19 |
18
|
nn0red |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℝ ) |
20 |
|
1red |
⊢ ( 𝑁 ∈ ℕ0 → 1 ∈ ℝ ) |
21 |
|
0le1 |
⊢ 0 ≤ 1 |
22 |
21
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 1 ) |
23 |
5 20 6 22
|
addge0d |
⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ ( 𝑁 + 1 ) ) |
24 |
|
divge0 |
⊢ ( ( ( ( 𝑁 + 1 ) ∈ ℝ ∧ 0 ≤ ( 𝑁 + 1 ) ) ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → 0 ≤ ( ( 𝑁 + 1 ) / 2 ) ) |
25 |
19 23 8 10 24
|
syl22anc |
⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ ( ( 𝑁 + 1 ) / 2 ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) → 0 ≤ ( ( 𝑁 + 1 ) / 2 ) ) |
27 |
|
elnn0z |
⊢ ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ↔ ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ 0 ≤ ( ( 𝑁 + 1 ) / 2 ) ) ) |
28 |
17 26 27
|
sylanbrc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) → ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) |
29 |
28
|
ex |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ → ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) ) |
30 |
16 29
|
orim12d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 / 2 ) ∈ ℤ ∨ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) → ( ( 𝑁 / 2 ) ∈ ℕ0 ∨ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) ) ) |
31 |
3 30
|
mpd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 / 2 ) ∈ ℕ0 ∨ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) ) |