Metamath Proof Explorer


Theorem nn0eo

Description: A nonnegative integer is even or odd. (Contributed by AV, 27-May-2020)

Ref Expression
Assertion nn0eo N0N20N+120

Proof

Step Hyp Ref Expression
1 nn0z N0N
2 zeo NN2N+12
3 1 2 syl N0N2N+12
4 simpr N0N2N2
5 nn0re N0N
6 nn0ge0 N00N
7 2re 2
8 7 a1i N02
9 2pos 0<2
10 9 a1i N00<2
11 divge0 N0N20<20N2
12 5 6 8 10 11 syl22anc N00N2
13 12 adantr N0N20N2
14 elnn0z N20N20N2
15 4 13 14 sylanbrc N0N2N20
16 15 ex N0N2N20
17 simpr N0N+12N+12
18 peano2nn0 N0N+10
19 18 nn0red N0N+1
20 1red N01
21 0le1 01
22 21 a1i N001
23 5 20 6 22 addge0d N00N+1
24 divge0 N+10N+120<20N+12
25 19 23 8 10 24 syl22anc N00N+12
26 25 adantr N0N+120N+12
27 elnn0z N+120N+120N+12
28 17 26 27 sylanbrc N0N+12N+120
29 28 ex N0N+12N+120
30 16 29 orim12d N0N2N+12N20N+120
31 3 30 mpd N0N20N+120