Metamath Proof Explorer


Theorem nnpw2even

Description: 2 to the power of a positive integer is even. (Contributed by AV, 2-Jun-2020)

Ref Expression
Assertion nnpw2even ( 𝑁 ∈ ℕ → ( ( 2 ↑ 𝑁 ) / 2 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 2cnd ( 𝑁 ∈ ℕ → 2 ∈ ℂ )
2 2ne0 2 ≠ 0
3 2 a1i ( 𝑁 ∈ ℕ → 2 ≠ 0 )
4 nnz ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ )
5 1 3 4 expm1d ( 𝑁 ∈ ℕ → ( 2 ↑ ( 𝑁 − 1 ) ) = ( ( 2 ↑ 𝑁 ) / 2 ) )
6 2nn 2 ∈ ℕ
7 6 a1i ( 𝑁 ∈ ℕ → 2 ∈ ℕ )
8 nnm1nn0 ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 )
9 7 8 nnexpcld ( 𝑁 ∈ ℕ → ( 2 ↑ ( 𝑁 − 1 ) ) ∈ ℕ )
10 5 9 eqeltrrd ( 𝑁 ∈ ℕ → ( ( 2 ↑ 𝑁 ) / 2 ) ∈ ℕ )