Metamath Proof Explorer


Theorem nnpw2even

Description: 2 to the power of a positive integer is even. (Contributed by AV, 2-Jun-2020)

Ref Expression
Assertion nnpw2even
|- ( N e. NN -> ( ( 2 ^ N ) / 2 ) e. NN )

Proof

Step Hyp Ref Expression
1 2cnd
 |-  ( N e. NN -> 2 e. CC )
2 2ne0
 |-  2 =/= 0
3 2 a1i
 |-  ( N e. NN -> 2 =/= 0 )
4 nnz
 |-  ( N e. NN -> N e. ZZ )
5 1 3 4 expm1d
 |-  ( N e. NN -> ( 2 ^ ( N - 1 ) ) = ( ( 2 ^ N ) / 2 ) )
6 2nn
 |-  2 e. NN
7 6 a1i
 |-  ( N e. NN -> 2 e. NN )
8 nnm1nn0
 |-  ( N e. NN -> ( N - 1 ) e. NN0 )
9 7 8 nnexpcld
 |-  ( N e. NN -> ( 2 ^ ( N - 1 ) ) e. NN )
10 5 9 eqeltrrd
 |-  ( N e. NN -> ( ( 2 ^ N ) / 2 ) e. NN )