Metamath Proof Explorer


Theorem nneom

Description: A positive integer is even or odd. (Contributed by AV, 30-May-2020)

Ref Expression
Assertion nneom
|- ( N e. NN -> ( ( N / 2 ) e. NN \/ ( ( N - 1 ) / 2 ) e. NN0 ) )

Proof

Step Hyp Ref Expression
1 nneop
 |-  ( N e. NN -> ( ( N / 2 ) e. NN \/ ( ( N + 1 ) / 2 ) e. NN ) )
2 nnnn0
 |-  ( N e. NN -> N e. NN0 )
3 nnnn0
 |-  ( ( ( N + 1 ) / 2 ) e. NN -> ( ( N + 1 ) / 2 ) e. NN0 )
4 nn0o
 |-  ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. NN0 )
5 2 3 4 syl2an
 |-  ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN ) -> ( ( N - 1 ) / 2 ) e. NN0 )
6 5 ex
 |-  ( N e. NN -> ( ( ( N + 1 ) / 2 ) e. NN -> ( ( N - 1 ) / 2 ) e. NN0 ) )
7 6 orim2d
 |-  ( N e. NN -> ( ( ( N / 2 ) e. NN \/ ( ( N + 1 ) / 2 ) e. NN ) -> ( ( N / 2 ) e. NN \/ ( ( N - 1 ) / 2 ) e. NN0 ) ) )
8 1 7 mpd
 |-  ( N e. NN -> ( ( N / 2 ) e. NN \/ ( ( N - 1 ) / 2 ) e. NN0 ) )