Metamath Proof Explorer


Theorem nneoiALTV

Description: A positive integer is even or odd but not both. (Contributed by NM, 20-Aug-2001) (Revised by AV, 19-Jun-2020)

Ref Expression
Hypothesis nneoiALTV.1
|- N e. NN
Assertion nneoiALTV
|- ( N e. Even <-> -. N e. Odd )

Proof

Step Hyp Ref Expression
1 nneoiALTV.1
 |-  N e. NN
2 nneoALTV
 |-  ( N e. NN -> ( N e. Even <-> -. N e. Odd ) )
3 1 2 ax-mp
 |-  ( N e. Even <-> -. N e. Odd )