Metamath Proof Explorer


Theorem nnsgrpmgm

Description: The structure of positive integers together with the addition of complex numbers is a magma. (Contributed by AV, 4-Feb-2020)

Ref Expression
Hypothesis nnsgrp.m
|- M = ( CCfld |`s NN )
Assertion nnsgrpmgm
|- M e. Mgm

Proof

Step Hyp Ref Expression
1 nnsgrp.m
 |-  M = ( CCfld |`s NN )
2 1nn
 |-  1 e. NN
3 nnaddcl
 |-  ( ( x e. NN /\ y e. NN ) -> ( x + y ) e. NN )
4 3 rgen2
 |-  A. x e. NN A. y e. NN ( x + y ) e. NN
5 nnsscn
 |-  NN C_ CC
6 1 cnfldsrngbas
 |-  ( NN C_ CC -> NN = ( Base ` M ) )
7 5 6 ax-mp
 |-  NN = ( Base ` M )
8 nnex
 |-  NN e. _V
9 1 cnfldsrngadd
 |-  ( NN e. _V -> + = ( +g ` M ) )
10 8 9 ax-mp
 |-  + = ( +g ` M )
11 7 10 ismgmn0
 |-  ( 1 e. NN -> ( M e. Mgm <-> A. x e. NN A. y e. NN ( x + y ) e. NN ) )
12 4 11 mpbiri
 |-  ( 1 e. NN -> M e. Mgm )
13 2 12 ax-mp
 |-  M e. Mgm