| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnsgrp.m |  |-  M = ( CCfld |`s NN ) | 
						
							| 2 |  | 1nn |  |-  1 e. NN | 
						
							| 3 |  | nnaddcl |  |-  ( ( x e. NN /\ y e. NN ) -> ( x + y ) e. NN ) | 
						
							| 4 | 3 | rgen2 |  |-  A. x e. NN A. y e. NN ( x + y ) e. NN | 
						
							| 5 |  | nnsscn |  |-  NN C_ CC | 
						
							| 6 | 1 | cnfldsrngbas |  |-  ( NN C_ CC -> NN = ( Base ` M ) ) | 
						
							| 7 | 5 6 | ax-mp |  |-  NN = ( Base ` M ) | 
						
							| 8 |  | nnex |  |-  NN e. _V | 
						
							| 9 | 1 | cnfldsrngadd |  |-  ( NN e. _V -> + = ( +g ` M ) ) | 
						
							| 10 | 8 9 | ax-mp |  |-  + = ( +g ` M ) | 
						
							| 11 | 7 10 | ismgmn0 |  |-  ( 1 e. NN -> ( M e. Mgm <-> A. x e. NN A. y e. NN ( x + y ) e. NN ) ) | 
						
							| 12 | 4 11 | mpbiri |  |-  ( 1 e. NN -> M e. Mgm ) | 
						
							| 13 | 2 12 | ax-mp |  |-  M e. Mgm |