Step |
Hyp |
Ref |
Expression |
1 |
|
nnsgrp.m |
|- M = ( CCfld |`s NN ) |
2 |
|
1nn |
|- 1 e. NN |
3 |
|
nnaddcl |
|- ( ( x e. NN /\ y e. NN ) -> ( x + y ) e. NN ) |
4 |
3
|
rgen2 |
|- A. x e. NN A. y e. NN ( x + y ) e. NN |
5 |
|
nnsscn |
|- NN C_ CC |
6 |
1
|
cnfldsrngbas |
|- ( NN C_ CC -> NN = ( Base ` M ) ) |
7 |
5 6
|
ax-mp |
|- NN = ( Base ` M ) |
8 |
|
nnex |
|- NN e. _V |
9 |
1
|
cnfldsrngadd |
|- ( NN e. _V -> + = ( +g ` M ) ) |
10 |
8 9
|
ax-mp |
|- + = ( +g ` M ) |
11 |
7 10
|
ismgmn0 |
|- ( 1 e. NN -> ( M e. Mgm <-> A. x e. NN A. y e. NN ( x + y ) e. NN ) ) |
12 |
4 11
|
mpbiri |
|- ( 1 e. NN -> M e. Mgm ) |
13 |
2 12
|
ax-mp |
|- M e. Mgm |