Metamath Proof Explorer


Theorem nnsno

Description: A positive surreal integer is a surreal. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Assertion nnsno
|- ( A e. NN_s -> A e. No )

Proof

Step Hyp Ref Expression
1 nnssno
 |-  NN_s C_ No
2 1 sseli
 |-  ( A e. NN_s -> A e. No )