Metamath Proof Explorer


Theorem nnsno

Description: A positive surreal integer is a surreal. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Assertion nnsno ( 𝐴 ∈ ℕs𝐴 No )

Proof

Step Hyp Ref Expression
1 nnssno s No
2 1 sseli ( 𝐴 ∈ ℕs𝐴 No )