Metamath Proof Explorer


Theorem nnssi3

Description: Convert a theorem for real/complex numbers into one for positive integers. (Contributed by Jeff Hoffman, 17-Jun-2008)

Ref Expression
Hypotheses nnssi3.1
|- NN C_ D
nnssi3.2
|- ( C e. NN -> ph )
nnssi3.3
|- ( ( ( A e. D /\ B e. D /\ C e. D ) /\ ph ) -> ps )
Assertion nnssi3
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ps )

Proof

Step Hyp Ref Expression
1 nnssi3.1
 |-  NN C_ D
2 nnssi3.2
 |-  ( C e. NN -> ph )
3 nnssi3.3
 |-  ( ( ( A e. D /\ B e. D /\ C e. D ) /\ ph ) -> ps )
4 1 sseli
 |-  ( A e. NN -> A e. D )
5 1 sseli
 |-  ( B e. NN -> B e. D )
6 1 sseli
 |-  ( C e. NN -> C e. D )
7 4 5 6 3anim123i
 |-  ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A e. D /\ B e. D /\ C e. D ) )
8 2 3ad2ant3
 |-  ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ph )
9 7 8 3 syl2anc
 |-  ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ps )