Description: Convert a theorem for real/complex numbers into one for positive integers. (Contributed by Jeff Hoffman, 17-Jun-2008)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nnssi3.1 | |- NN C_ D |
|
nnssi3.2 | |- ( C e. NN -> ph ) |
||
nnssi3.3 | |- ( ( ( A e. D /\ B e. D /\ C e. D ) /\ ph ) -> ps ) |
||
Assertion | nnssi3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssi3.1 | |- NN C_ D |
|
2 | nnssi3.2 | |- ( C e. NN -> ph ) |
|
3 | nnssi3.3 | |- ( ( ( A e. D /\ B e. D /\ C e. D ) /\ ph ) -> ps ) |
|
4 | 1 | sseli | |- ( A e. NN -> A e. D ) |
5 | 1 | sseli | |- ( B e. NN -> B e. D ) |
6 | 1 | sseli | |- ( C e. NN -> C e. D ) |
7 | 4 5 6 | 3anim123i | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A e. D /\ B e. D /\ C e. D ) ) |
8 | 2 | 3ad2ant3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ph ) |
9 | 7 8 3 | syl2anc | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ps ) |