| Step |
Hyp |
Ref |
Expression |
| 1 |
|
normlem8.1 |
|- A e. ~H |
| 2 |
|
normlem8.2 |
|- B e. ~H |
| 3 |
|
normlem8.3 |
|- C e. ~H |
| 4 |
|
normlem8.4 |
|- D e. ~H |
| 5 |
|
his7 |
|- ( ( A e. ~H /\ C e. ~H /\ D e. ~H ) -> ( A .ih ( C +h D ) ) = ( ( A .ih C ) + ( A .ih D ) ) ) |
| 6 |
1 3 4 5
|
mp3an |
|- ( A .ih ( C +h D ) ) = ( ( A .ih C ) + ( A .ih D ) ) |
| 7 |
|
his7 |
|- ( ( B e. ~H /\ C e. ~H /\ D e. ~H ) -> ( B .ih ( C +h D ) ) = ( ( B .ih C ) + ( B .ih D ) ) ) |
| 8 |
2 3 4 7
|
mp3an |
|- ( B .ih ( C +h D ) ) = ( ( B .ih C ) + ( B .ih D ) ) |
| 9 |
6 8
|
oveq12i |
|- ( ( A .ih ( C +h D ) ) + ( B .ih ( C +h D ) ) ) = ( ( ( A .ih C ) + ( A .ih D ) ) + ( ( B .ih C ) + ( B .ih D ) ) ) |
| 10 |
3 4
|
hvaddcli |
|- ( C +h D ) e. ~H |
| 11 |
|
ax-his2 |
|- ( ( A e. ~H /\ B e. ~H /\ ( C +h D ) e. ~H ) -> ( ( A +h B ) .ih ( C +h D ) ) = ( ( A .ih ( C +h D ) ) + ( B .ih ( C +h D ) ) ) ) |
| 12 |
1 2 10 11
|
mp3an |
|- ( ( A +h B ) .ih ( C +h D ) ) = ( ( A .ih ( C +h D ) ) + ( B .ih ( C +h D ) ) ) |
| 13 |
1 3
|
hicli |
|- ( A .ih C ) e. CC |
| 14 |
2 4
|
hicli |
|- ( B .ih D ) e. CC |
| 15 |
1 4
|
hicli |
|- ( A .ih D ) e. CC |
| 16 |
2 3
|
hicli |
|- ( B .ih C ) e. CC |
| 17 |
13 14 15 16
|
add42i |
|- ( ( ( A .ih C ) + ( B .ih D ) ) + ( ( A .ih D ) + ( B .ih C ) ) ) = ( ( ( A .ih C ) + ( A .ih D ) ) + ( ( B .ih C ) + ( B .ih D ) ) ) |
| 18 |
9 12 17
|
3eqtr4i |
|- ( ( A +h B ) .ih ( C +h D ) ) = ( ( ( A .ih C ) + ( B .ih D ) ) + ( ( A .ih D ) + ( B .ih C ) ) ) |