| Step |
Hyp |
Ref |
Expression |
| 1 |
|
normlem8.1 |
⊢ 𝐴 ∈ ℋ |
| 2 |
|
normlem8.2 |
⊢ 𝐵 ∈ ℋ |
| 3 |
|
normlem8.3 |
⊢ 𝐶 ∈ ℋ |
| 4 |
|
normlem8.4 |
⊢ 𝐷 ∈ ℋ |
| 5 |
|
his7 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( 𝐴 ·ih ( 𝐶 +ℎ 𝐷 ) ) = ( ( 𝐴 ·ih 𝐶 ) + ( 𝐴 ·ih 𝐷 ) ) ) |
| 6 |
1 3 4 5
|
mp3an |
⊢ ( 𝐴 ·ih ( 𝐶 +ℎ 𝐷 ) ) = ( ( 𝐴 ·ih 𝐶 ) + ( 𝐴 ·ih 𝐷 ) ) |
| 7 |
|
his7 |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( 𝐵 ·ih ( 𝐶 +ℎ 𝐷 ) ) = ( ( 𝐵 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) ) |
| 8 |
2 3 4 7
|
mp3an |
⊢ ( 𝐵 ·ih ( 𝐶 +ℎ 𝐷 ) ) = ( ( 𝐵 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) |
| 9 |
6 8
|
oveq12i |
⊢ ( ( 𝐴 ·ih ( 𝐶 +ℎ 𝐷 ) ) + ( 𝐵 ·ih ( 𝐶 +ℎ 𝐷 ) ) ) = ( ( ( 𝐴 ·ih 𝐶 ) + ( 𝐴 ·ih 𝐷 ) ) + ( ( 𝐵 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) ) |
| 10 |
3 4
|
hvaddcli |
⊢ ( 𝐶 +ℎ 𝐷 ) ∈ ℋ |
| 11 |
|
ax-his2 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( 𝐶 +ℎ 𝐷 ) ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐶 +ℎ 𝐷 ) ) = ( ( 𝐴 ·ih ( 𝐶 +ℎ 𝐷 ) ) + ( 𝐵 ·ih ( 𝐶 +ℎ 𝐷 ) ) ) ) |
| 12 |
1 2 10 11
|
mp3an |
⊢ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐶 +ℎ 𝐷 ) ) = ( ( 𝐴 ·ih ( 𝐶 +ℎ 𝐷 ) ) + ( 𝐵 ·ih ( 𝐶 +ℎ 𝐷 ) ) ) |
| 13 |
1 3
|
hicli |
⊢ ( 𝐴 ·ih 𝐶 ) ∈ ℂ |
| 14 |
2 4
|
hicli |
⊢ ( 𝐵 ·ih 𝐷 ) ∈ ℂ |
| 15 |
1 4
|
hicli |
⊢ ( 𝐴 ·ih 𝐷 ) ∈ ℂ |
| 16 |
2 3
|
hicli |
⊢ ( 𝐵 ·ih 𝐶 ) ∈ ℂ |
| 17 |
13 14 15 16
|
add42i |
⊢ ( ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) + ( ( 𝐴 ·ih 𝐷 ) + ( 𝐵 ·ih 𝐶 ) ) ) = ( ( ( 𝐴 ·ih 𝐶 ) + ( 𝐴 ·ih 𝐷 ) ) + ( ( 𝐵 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) ) |
| 18 |
9 12 17
|
3eqtr4i |
⊢ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐶 +ℎ 𝐷 ) ) = ( ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) + ( ( 𝐴 ·ih 𝐷 ) + ( 𝐵 ·ih 𝐶 ) ) ) |