Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | |- ( ph -> A e. CC ) |
|
| pncand.2 | |- ( ph -> B e. CC ) |
||
| subaddd.3 | |- ( ph -> C e. CC ) |
||
| Assertion | npncan3d | |- ( ph -> ( ( A - B ) + ( C - A ) ) = ( C - B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | |- ( ph -> A e. CC ) |
|
| 2 | pncand.2 | |- ( ph -> B e. CC ) |
|
| 3 | subaddd.3 | |- ( ph -> C e. CC ) |
|
| 4 | npncan3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) + ( C - A ) ) = ( C - B ) ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> ( ( A - B ) + ( C - A ) ) = ( C - B ) ) |