| Step |
Hyp |
Ref |
Expression |
| 1 |
|
numma.1 |
|- T e. NN0 |
| 2 |
|
numma.2 |
|- A e. NN0 |
| 3 |
|
numma.3 |
|- B e. NN0 |
| 4 |
|
numma.4 |
|- C e. NN0 |
| 5 |
|
numma.5 |
|- D e. NN0 |
| 6 |
|
numma.6 |
|- M = ( ( T x. A ) + B ) |
| 7 |
|
numma.7 |
|- N = ( ( T x. C ) + D ) |
| 8 |
|
numaddc.8 |
|- F e. NN0 |
| 9 |
|
numaddc.9 |
|- ( ( A + C ) + 1 ) = E |
| 10 |
|
numaddc.10 |
|- ( B + D ) = ( ( T x. 1 ) + F ) |
| 11 |
1 2 3
|
numcl |
|- ( ( T x. A ) + B ) e. NN0 |
| 12 |
6 11
|
eqeltri |
|- M e. NN0 |
| 13 |
12
|
nn0cni |
|- M e. CC |
| 14 |
13
|
mulridi |
|- ( M x. 1 ) = M |
| 15 |
14
|
oveq1i |
|- ( ( M x. 1 ) + N ) = ( M + N ) |
| 16 |
|
1nn0 |
|- 1 e. NN0 |
| 17 |
2
|
nn0cni |
|- A e. CC |
| 18 |
17
|
mulridi |
|- ( A x. 1 ) = A |
| 19 |
18
|
oveq1i |
|- ( ( A x. 1 ) + ( C + 1 ) ) = ( A + ( C + 1 ) ) |
| 20 |
4
|
nn0cni |
|- C e. CC |
| 21 |
|
ax-1cn |
|- 1 e. CC |
| 22 |
17 20 21
|
addassi |
|- ( ( A + C ) + 1 ) = ( A + ( C + 1 ) ) |
| 23 |
19 22 9
|
3eqtr2i |
|- ( ( A x. 1 ) + ( C + 1 ) ) = E |
| 24 |
3
|
nn0cni |
|- B e. CC |
| 25 |
24
|
mulridi |
|- ( B x. 1 ) = B |
| 26 |
25
|
oveq1i |
|- ( ( B x. 1 ) + D ) = ( B + D ) |
| 27 |
26 10
|
eqtri |
|- ( ( B x. 1 ) + D ) = ( ( T x. 1 ) + F ) |
| 28 |
1 2 3 4 5 6 7 16 8 16 23 27
|
nummac |
|- ( ( M x. 1 ) + N ) = ( ( T x. E ) + F ) |
| 29 |
15 28
|
eqtr3i |
|- ( M + N ) = ( ( T x. E ) + F ) |