Metamath Proof Explorer


Theorem numexp

Description: numsq extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023)

Ref Expression
Assertion numexp
|- ( ( A e. QQ /\ N e. NN0 ) -> ( numer ` ( A ^ N ) ) = ( ( numer ` A ) ^ N ) )

Proof

Step Hyp Ref Expression
1 numdenexp
 |-  ( ( A e. QQ /\ N e. NN0 ) -> ( ( numer ` ( A ^ N ) ) = ( ( numer ` A ) ^ N ) /\ ( denom ` ( A ^ N ) ) = ( ( denom ` A ) ^ N ) ) )
2 1 simpld
 |-  ( ( A e. QQ /\ N e. NN0 ) -> ( numer ` ( A ^ N ) ) = ( ( numer ` A ) ^ N ) )