Metamath Proof Explorer


Theorem numexp

Description: numsq extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023)

Ref Expression
Assertion numexp ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( numer ‘ ( 𝐴𝑁 ) ) = ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 numdenexp ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( numer ‘ ( 𝐴𝑁 ) ) = ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) ∧ ( denom ‘ ( 𝐴𝑁 ) ) = ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) )
2 1 simpld ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( numer ‘ ( 𝐴𝑁 ) ) = ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) )