Description: densq extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | denexp | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( denom ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numdenexp | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( numer ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) ∧ ( denom ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) ) | |
2 | 1 | simprd | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( denom ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) |