Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Exponents and divisibility
denexp
Next ⟩
dvdsexpnn
Metamath Proof Explorer
Ascii
Unicode
Theorem
denexp
Description:
densq
extended to nonnegative exponents.
(Contributed by
Steven Nguyen
, 5-Apr-2023)
Ref
Expression
Assertion
denexp
⊢
A
∈
ℚ
∧
N
∈
ℕ
0
→
denom
⁡
A
N
=
denom
⁡
A
N
Proof
Step
Hyp
Ref
Expression
1
numdenexp
⊢
A
∈
ℚ
∧
N
∈
ℕ
0
→
numer
⁡
A
N
=
numer
⁡
A
N
∧
denom
⁡
A
N
=
denom
⁡
A
N
2
1
simprd
⊢
A
∈
ℚ
∧
N
∈
ℕ
0
→
denom
⁡
A
N
=
denom
⁡
A
N