| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnz |
|
| 2 |
|
nnz |
|
| 3 |
|
nnnn0 |
|
| 4 |
|
dvdsexpim |
|
| 5 |
1 2 3 4
|
syl3an |
|
| 6 |
|
gcdnncl |
|
| 7 |
6
|
nnrpd |
|
| 8 |
7
|
3adant3 |
|
| 9 |
8
|
adantr |
|
| 10 |
|
simpl1 |
|
| 11 |
10
|
nnrpd |
|
| 12 |
|
simpl3 |
|
| 13 |
|
expgcd |
|
| 14 |
3 13
|
syl3an3 |
|
| 15 |
14
|
adantr |
|
| 16 |
|
simp1 |
|
| 17 |
3
|
3ad2ant3 |
|
| 18 |
16 17
|
nnexpcld |
|
| 19 |
|
simp2 |
|
| 20 |
19 17
|
nnexpcld |
|
| 21 |
|
gcdeq |
|
| 22 |
18 20 21
|
syl2anc |
|
| 23 |
22
|
biimpar |
|
| 24 |
15 23
|
eqtrd |
|
| 25 |
9 11 12 24
|
exp11nnd |
|
| 26 |
|
gcddvds |
|
| 27 |
26
|
simprd |
|
| 28 |
1 2 27
|
syl2an |
|
| 29 |
28
|
3adant3 |
|
| 30 |
29
|
adantr |
|
| 31 |
25 30
|
eqbrtrrd |
|
| 32 |
31
|
ex |
|
| 33 |
5 32
|
impbid |
|