Metamath Proof Explorer


Theorem dvdsexpim

Description: dvdssqim generalized to nonnegative exponents. (Contributed by Steven Nguyen, 2-Apr-2023)

Ref Expression
Assertion dvdsexpim A B N 0 A B A N B N

Proof

Step Hyp Ref Expression
1 divides A B A B k k A = B
2 1 3adant3 A B N 0 A B k k A = B
3 zexpcl k N 0 k N
4 3 ancoms N 0 k k N
5 4 adantll A N 0 k k N
6 zexpcl A N 0 A N
7 6 adantr A N 0 k A N
8 dvdsmul2 k N A N A N k N A N
9 5 7 8 syl2anc A N 0 k A N k N A N
10 zcn k k
11 10 adantl A N 0 k k
12 zcn A A
13 12 ad2antrr A N 0 k A
14 simplr A N 0 k N 0
15 11 13 14 mulexpd A N 0 k k A N = k N A N
16 9 15 breqtrrd A N 0 k A N k A N
17 oveq1 k A = B k A N = B N
18 17 breq2d k A = B A N k A N A N B N
19 16 18 syl5ibcom A N 0 k k A = B A N B N
20 19 rexlimdva A N 0 k k A = B A N B N
21 20 3adant2 A B N 0 k k A = B A N B N
22 2 21 sylbid A B N 0 A B A N B N