Metamath Proof Explorer


Theorem mulexpd

Description: Nonnegative integer exponentiation of a product. Proposition 10-4.2(c) of Gleason p. 135, restricted to nonnegative integer exponents. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 φA
mulexpd.2 φB
mulexpd.3 φN0
Assertion mulexpd φABN=ANBN

Proof

Step Hyp Ref Expression
1 expcld.1 φA
2 mulexpd.2 φB
3 mulexpd.3 φN0
4 mulexp ABN0ABN=ANBN
5 1 2 3 4 syl3anc φABN=ANBN