Step |
Hyp |
Ref |
Expression |
1 |
|
divides |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A || B <-> E. k e. ZZ ( k x. A ) = B ) ) |
2 |
1
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( A || B <-> E. k e. ZZ ( k x. A ) = B ) ) |
3 |
|
zexpcl |
|- ( ( k e. ZZ /\ N e. NN0 ) -> ( k ^ N ) e. ZZ ) |
4 |
3
|
ancoms |
|- ( ( N e. NN0 /\ k e. ZZ ) -> ( k ^ N ) e. ZZ ) |
5 |
4
|
adantll |
|- ( ( ( A e. ZZ /\ N e. NN0 ) /\ k e. ZZ ) -> ( k ^ N ) e. ZZ ) |
6 |
|
zexpcl |
|- ( ( A e. ZZ /\ N e. NN0 ) -> ( A ^ N ) e. ZZ ) |
7 |
6
|
adantr |
|- ( ( ( A e. ZZ /\ N e. NN0 ) /\ k e. ZZ ) -> ( A ^ N ) e. ZZ ) |
8 |
|
dvdsmul2 |
|- ( ( ( k ^ N ) e. ZZ /\ ( A ^ N ) e. ZZ ) -> ( A ^ N ) || ( ( k ^ N ) x. ( A ^ N ) ) ) |
9 |
5 7 8
|
syl2anc |
|- ( ( ( A e. ZZ /\ N e. NN0 ) /\ k e. ZZ ) -> ( A ^ N ) || ( ( k ^ N ) x. ( A ^ N ) ) ) |
10 |
|
zcn |
|- ( k e. ZZ -> k e. CC ) |
11 |
10
|
adantl |
|- ( ( ( A e. ZZ /\ N e. NN0 ) /\ k e. ZZ ) -> k e. CC ) |
12 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
13 |
12
|
ad2antrr |
|- ( ( ( A e. ZZ /\ N e. NN0 ) /\ k e. ZZ ) -> A e. CC ) |
14 |
|
simplr |
|- ( ( ( A e. ZZ /\ N e. NN0 ) /\ k e. ZZ ) -> N e. NN0 ) |
15 |
11 13 14
|
mulexpd |
|- ( ( ( A e. ZZ /\ N e. NN0 ) /\ k e. ZZ ) -> ( ( k x. A ) ^ N ) = ( ( k ^ N ) x. ( A ^ N ) ) ) |
16 |
9 15
|
breqtrrd |
|- ( ( ( A e. ZZ /\ N e. NN0 ) /\ k e. ZZ ) -> ( A ^ N ) || ( ( k x. A ) ^ N ) ) |
17 |
|
oveq1 |
|- ( ( k x. A ) = B -> ( ( k x. A ) ^ N ) = ( B ^ N ) ) |
18 |
17
|
breq2d |
|- ( ( k x. A ) = B -> ( ( A ^ N ) || ( ( k x. A ) ^ N ) <-> ( A ^ N ) || ( B ^ N ) ) ) |
19 |
16 18
|
syl5ibcom |
|- ( ( ( A e. ZZ /\ N e. NN0 ) /\ k e. ZZ ) -> ( ( k x. A ) = B -> ( A ^ N ) || ( B ^ N ) ) ) |
20 |
19
|
rexlimdva |
|- ( ( A e. ZZ /\ N e. NN0 ) -> ( E. k e. ZZ ( k x. A ) = B -> ( A ^ N ) || ( B ^ N ) ) ) |
21 |
20
|
3adant2 |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( E. k e. ZZ ( k x. A ) = B -> ( A ^ N ) || ( B ^ N ) ) ) |
22 |
2 21
|
sylbid |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( A || B -> ( A ^ N ) || ( B ^ N ) ) ) |