Metamath Proof Explorer


Theorem dvdsexpnn0

Description: dvdsexpnn generalized to include zero bases. (Contributed by SN, 15-Sep-2024)

Ref Expression
Assertion dvdsexpnn0 A 0 B 0 N A B A N B N

Proof

Step Hyp Ref Expression
1 elnn0 A 0 A A = 0
2 elnn0 B 0 B B = 0
3 dvdsexpnn A B N A B A N B N
4 3 3expia A B N A B A N B N
5 nncn B B
6 expeq0 B N B N = 0 B = 0
7 5 6 sylan B N B N = 0 B = 0
8 0exp N 0 N = 0
9 8 adantl B N 0 N = 0
10 9 breq1d B N 0 N B N 0 B N
11 nnnn0 N N 0
12 nnexpcl B N 0 B N
13 11 12 sylan2 B N B N
14 13 nnzd B N B N
15 0dvds B N 0 B N B N = 0
16 14 15 syl B N 0 B N B N = 0
17 10 16 bitrd B N 0 N B N B N = 0
18 nnz B B
19 0dvds B 0 B B = 0
20 18 19 syl B 0 B B = 0
21 20 adantr B N 0 B B = 0
22 7 17 21 3bitr4rd B N 0 B 0 N B N
23 breq1 A = 0 A B 0 B
24 oveq1 A = 0 A N = 0 N
25 24 breq1d A = 0 A N B N 0 N B N
26 23 25 bibi12d A = 0 A B A N B N 0 B 0 N B N
27 22 26 syl5ibr A = 0 B N A B A N B N
28 27 expdimp A = 0 B N A B A N B N
29 nnz A A
30 dvds0 A A 0
31 29 30 syl A A 0
32 31 adantr A N A 0
33 nnexpcl A N 0 A N
34 11 33 sylan2 A N A N
35 34 nnzd A N A N
36 dvds0 A N A N 0
37 35 36 syl A N A N 0
38 8 adantl A N 0 N = 0
39 37 38 breqtrrd A N A N 0 N
40 32 39 2thd A N A 0 A N 0 N
41 breq2 B = 0 A B A 0
42 oveq1 B = 0 B N = 0 N
43 42 breq2d B = 0 A N B N A N 0 N
44 41 43 bibi12d B = 0 A B A N B N A 0 A N 0 N
45 40 44 syl5ibrcom A N B = 0 A B A N B N
46 45 impancom A B = 0 N A B A N B N
47 8 8 breq12d N 0 N 0 N 0 0
48 47 bicomd N 0 0 0 N 0 N
49 breq12 A = 0 B = 0 A B 0 0
50 simpl A = 0 B = 0 A = 0
51 50 oveq1d A = 0 B = 0 A N = 0 N
52 simpr A = 0 B = 0 B = 0
53 52 oveq1d A = 0 B = 0 B N = 0 N
54 51 53 breq12d A = 0 B = 0 A N B N 0 N 0 N
55 49 54 bibi12d A = 0 B = 0 A B A N B N 0 0 0 N 0 N
56 48 55 syl5ibr A = 0 B = 0 N A B A N B N
57 4 28 46 56 ccase A A = 0 B B = 0 N A B A N B N
58 1 2 57 syl2anb A 0 B 0 N A B A N B N
59 58 3impia A 0 B 0 N A B A N B N