Metamath Proof Explorer


Theorem dvdsexpb

Description: dvdssq generalized to positive integer exponents. (Contributed by SN, 15-Sep-2024)

Ref Expression
Assertion dvdsexpb A B N A B A N B N

Proof

Step Hyp Ref Expression
1 nn0abscl A A 0
2 nn0abscl B B 0
3 dvdsexpnn0 A 0 B 0 N A B A N B N
4 1 2 3 syl3an12 A B N A B A N B N
5 simp1 A B N A
6 5 zcnd A B N A
7 simp3 A B N N
8 7 nnnn0d A B N N 0
9 6 8 absexpd A B N A N = A N
10 simp2 A B N B
11 10 zcnd A B N B
12 11 8 absexpd A B N B N = B N
13 9 12 breq12d A B N A N B N A N B N
14 4 13 bitr4d A B N A B A N B N
15 absdvdsabsb A B A B A B
16 15 3adant3 A B N A B A B
17 5 8 zexpcld A B N A N
18 10 8 zexpcld A B N B N
19 absdvdsabsb A N B N A N B N A N B N
20 17 18 19 syl2anc A B N A N B N A N B N
21 14 16 20 3bitr4d A B N A B A N B N