| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0abscl |
|- ( A e. ZZ -> ( abs ` A ) e. NN0 ) |
| 2 |
|
nn0abscl |
|- ( B e. ZZ -> ( abs ` B ) e. NN0 ) |
| 3 |
|
dvdsexpnn0 |
|- ( ( ( abs ` A ) e. NN0 /\ ( abs ` B ) e. NN0 /\ N e. NN ) -> ( ( abs ` A ) || ( abs ` B ) <-> ( ( abs ` A ) ^ N ) || ( ( abs ` B ) ^ N ) ) ) |
| 4 |
1 2 3
|
syl3an12 |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( abs ` A ) || ( abs ` B ) <-> ( ( abs ` A ) ^ N ) || ( ( abs ` B ) ^ N ) ) ) |
| 5 |
|
simp1 |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> A e. ZZ ) |
| 6 |
5
|
zcnd |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> A e. CC ) |
| 7 |
|
simp3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> N e. NN ) |
| 8 |
7
|
nnnn0d |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> N e. NN0 ) |
| 9 |
6 8
|
absexpd |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( abs ` ( A ^ N ) ) = ( ( abs ` A ) ^ N ) ) |
| 10 |
|
simp2 |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> B e. ZZ ) |
| 11 |
10
|
zcnd |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> B e. CC ) |
| 12 |
11 8
|
absexpd |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( abs ` ( B ^ N ) ) = ( ( abs ` B ) ^ N ) ) |
| 13 |
9 12
|
breq12d |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( abs ` ( A ^ N ) ) || ( abs ` ( B ^ N ) ) <-> ( ( abs ` A ) ^ N ) || ( ( abs ` B ) ^ N ) ) ) |
| 14 |
4 13
|
bitr4d |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( abs ` A ) || ( abs ` B ) <-> ( abs ` ( A ^ N ) ) || ( abs ` ( B ^ N ) ) ) ) |
| 15 |
|
absdvdsabsb |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A || B <-> ( abs ` A ) || ( abs ` B ) ) ) |
| 16 |
15
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( A || B <-> ( abs ` A ) || ( abs ` B ) ) ) |
| 17 |
5 8
|
zexpcld |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( A ^ N ) e. ZZ ) |
| 18 |
10 8
|
zexpcld |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( B ^ N ) e. ZZ ) |
| 19 |
|
absdvdsabsb |
|- ( ( ( A ^ N ) e. ZZ /\ ( B ^ N ) e. ZZ ) -> ( ( A ^ N ) || ( B ^ N ) <-> ( abs ` ( A ^ N ) ) || ( abs ` ( B ^ N ) ) ) ) |
| 20 |
17 18 19
|
syl2anc |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( A ^ N ) || ( B ^ N ) <-> ( abs ` ( A ^ N ) ) || ( abs ` ( B ^ N ) ) ) ) |
| 21 |
14 16 20
|
3bitr4d |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( A || B <-> ( A ^ N ) || ( B ^ N ) ) ) |