Step |
Hyp |
Ref |
Expression |
1 |
|
posqsqznn.1 |
|- ( ph -> ( A ^ 2 ) e. ZZ ) |
2 |
|
posqsqznn.2 |
|- ( ph -> A e. QQ ) |
3 |
|
posqsqznn.3 |
|- ( ph -> 0 < A ) |
4 |
2
|
qred |
|- ( ph -> A e. RR ) |
5 |
|
0red |
|- ( ph -> 0 e. RR ) |
6 |
5 4 3
|
ltled |
|- ( ph -> 0 <_ A ) |
7 |
4 6
|
sqrtsqd |
|- ( ph -> ( sqrt ` ( A ^ 2 ) ) = A ) |
8 |
7 2
|
eqeltrd |
|- ( ph -> ( sqrt ` ( A ^ 2 ) ) e. QQ ) |
9 |
|
zsqrtelqelz |
|- ( ( ( A ^ 2 ) e. ZZ /\ ( sqrt ` ( A ^ 2 ) ) e. QQ ) -> ( sqrt ` ( A ^ 2 ) ) e. ZZ ) |
10 |
1 8 9
|
syl2anc |
|- ( ph -> ( sqrt ` ( A ^ 2 ) ) e. ZZ ) |
11 |
7 10
|
eqeltrrd |
|- ( ph -> A e. ZZ ) |
12 |
|
elnnz |
|- ( A e. NN <-> ( A e. ZZ /\ 0 < A ) ) |
13 |
11 3 12
|
sylanbrc |
|- ( ph -> A e. NN ) |