| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qdencl |
|- ( ( sqrt ` A ) e. QQ -> ( denom ` ( sqrt ` A ) ) e. NN ) |
| 2 |
1
|
adantl |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( denom ` ( sqrt ` A ) ) e. NN ) |
| 3 |
2
|
nnred |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( denom ` ( sqrt ` A ) ) e. RR ) |
| 4 |
|
1red |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> 1 e. RR ) |
| 5 |
2
|
nnnn0d |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( denom ` ( sqrt ` A ) ) e. NN0 ) |
| 6 |
5
|
nn0ge0d |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> 0 <_ ( denom ` ( sqrt ` A ) ) ) |
| 7 |
|
0le1 |
|- 0 <_ 1 |
| 8 |
7
|
a1i |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> 0 <_ 1 ) |
| 9 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 10 |
9
|
a1i |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( 1 ^ 2 ) = 1 ) |
| 11 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
| 12 |
11
|
sqsqrtd |
|- ( A e. ZZ -> ( ( sqrt ` A ) ^ 2 ) = A ) |
| 13 |
12
|
adantr |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |
| 14 |
13
|
fveq2d |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( denom ` ( ( sqrt ` A ) ^ 2 ) ) = ( denom ` A ) ) |
| 15 |
|
simpl |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> A e. ZZ ) |
| 16 |
|
zq |
|- ( A e. ZZ -> A e. QQ ) |
| 17 |
16
|
adantr |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> A e. QQ ) |
| 18 |
|
qden1elz |
|- ( A e. QQ -> ( ( denom ` A ) = 1 <-> A e. ZZ ) ) |
| 19 |
17 18
|
syl |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( ( denom ` A ) = 1 <-> A e. ZZ ) ) |
| 20 |
15 19
|
mpbird |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( denom ` A ) = 1 ) |
| 21 |
14 20
|
eqtrd |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( denom ` ( ( sqrt ` A ) ^ 2 ) ) = 1 ) |
| 22 |
|
densq |
|- ( ( sqrt ` A ) e. QQ -> ( denom ` ( ( sqrt ` A ) ^ 2 ) ) = ( ( denom ` ( sqrt ` A ) ) ^ 2 ) ) |
| 23 |
22
|
adantl |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( denom ` ( ( sqrt ` A ) ^ 2 ) ) = ( ( denom ` ( sqrt ` A ) ) ^ 2 ) ) |
| 24 |
10 21 23
|
3eqtr2rd |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( ( denom ` ( sqrt ` A ) ) ^ 2 ) = ( 1 ^ 2 ) ) |
| 25 |
3 4 6 8 24
|
sq11d |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( denom ` ( sqrt ` A ) ) = 1 ) |
| 26 |
|
qden1elz |
|- ( ( sqrt ` A ) e. QQ -> ( ( denom ` ( sqrt ` A ) ) = 1 <-> ( sqrt ` A ) e. ZZ ) ) |
| 27 |
26
|
adantl |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( ( denom ` ( sqrt ` A ) ) = 1 <-> ( sqrt ` A ) e. ZZ ) ) |
| 28 |
25 27
|
mpbid |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( sqrt ` A ) e. ZZ ) |