| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qeqnumdivden |
|- ( A e. QQ -> A = ( ( numer ` A ) / ( denom ` A ) ) ) |
| 2 |
1
|
adantr |
|- ( ( A e. QQ /\ ( denom ` A ) = 1 ) -> A = ( ( numer ` A ) / ( denom ` A ) ) ) |
| 3 |
|
oveq2 |
|- ( ( denom ` A ) = 1 -> ( ( numer ` A ) / ( denom ` A ) ) = ( ( numer ` A ) / 1 ) ) |
| 4 |
3
|
adantl |
|- ( ( A e. QQ /\ ( denom ` A ) = 1 ) -> ( ( numer ` A ) / ( denom ` A ) ) = ( ( numer ` A ) / 1 ) ) |
| 5 |
|
qnumcl |
|- ( A e. QQ -> ( numer ` A ) e. ZZ ) |
| 6 |
5
|
adantr |
|- ( ( A e. QQ /\ ( denom ` A ) = 1 ) -> ( numer ` A ) e. ZZ ) |
| 7 |
6
|
zcnd |
|- ( ( A e. QQ /\ ( denom ` A ) = 1 ) -> ( numer ` A ) e. CC ) |
| 8 |
7
|
div1d |
|- ( ( A e. QQ /\ ( denom ` A ) = 1 ) -> ( ( numer ` A ) / 1 ) = ( numer ` A ) ) |
| 9 |
2 4 8
|
3eqtrd |
|- ( ( A e. QQ /\ ( denom ` A ) = 1 ) -> A = ( numer ` A ) ) |
| 10 |
9 6
|
eqeltrd |
|- ( ( A e. QQ /\ ( denom ` A ) = 1 ) -> A e. ZZ ) |
| 11 |
|
simpr |
|- ( ( A e. QQ /\ A e. ZZ ) -> A e. ZZ ) |
| 12 |
11
|
zcnd |
|- ( ( A e. QQ /\ A e. ZZ ) -> A e. CC ) |
| 13 |
12
|
div1d |
|- ( ( A e. QQ /\ A e. ZZ ) -> ( A / 1 ) = A ) |
| 14 |
13
|
fveq2d |
|- ( ( A e. QQ /\ A e. ZZ ) -> ( denom ` ( A / 1 ) ) = ( denom ` A ) ) |
| 15 |
|
1nn |
|- 1 e. NN |
| 16 |
|
divdenle |
|- ( ( A e. ZZ /\ 1 e. NN ) -> ( denom ` ( A / 1 ) ) <_ 1 ) |
| 17 |
11 15 16
|
sylancl |
|- ( ( A e. QQ /\ A e. ZZ ) -> ( denom ` ( A / 1 ) ) <_ 1 ) |
| 18 |
14 17
|
eqbrtrrd |
|- ( ( A e. QQ /\ A e. ZZ ) -> ( denom ` A ) <_ 1 ) |
| 19 |
|
qdencl |
|- ( A e. QQ -> ( denom ` A ) e. NN ) |
| 20 |
19
|
adantr |
|- ( ( A e. QQ /\ A e. ZZ ) -> ( denom ` A ) e. NN ) |
| 21 |
|
nnle1eq1 |
|- ( ( denom ` A ) e. NN -> ( ( denom ` A ) <_ 1 <-> ( denom ` A ) = 1 ) ) |
| 22 |
20 21
|
syl |
|- ( ( A e. QQ /\ A e. ZZ ) -> ( ( denom ` A ) <_ 1 <-> ( denom ` A ) = 1 ) ) |
| 23 |
18 22
|
mpbid |
|- ( ( A e. QQ /\ A e. ZZ ) -> ( denom ` A ) = 1 ) |
| 24 |
10 23
|
impbida |
|- ( A e. QQ -> ( ( denom ` A ) = 1 <-> A e. ZZ ) ) |