| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qeqnumdivden |
|
| 2 |
1
|
adantr |
|
| 3 |
|
oveq2 |
|
| 4 |
3
|
adantl |
|
| 5 |
|
qnumcl |
|
| 6 |
5
|
adantr |
|
| 7 |
6
|
zcnd |
|
| 8 |
7
|
div1d |
|
| 9 |
2 4 8
|
3eqtrd |
|
| 10 |
9 6
|
eqeltrd |
|
| 11 |
|
simpr |
|
| 12 |
11
|
zcnd |
|
| 13 |
12
|
div1d |
|
| 14 |
13
|
fveq2d |
|
| 15 |
|
1nn |
|
| 16 |
|
divdenle |
|
| 17 |
11 15 16
|
sylancl |
|
| 18 |
14 17
|
eqbrtrrd |
|
| 19 |
|
qdencl |
|
| 20 |
19
|
adantr |
|
| 21 |
|
nnle1eq1 |
|
| 22 |
20 21
|
syl |
|
| 23 |
18 22
|
mpbid |
|
| 24 |
10 23
|
impbida |
|