| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qeqnumdivden |
⊢ ( 𝐴 ∈ ℚ → 𝐴 = ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℚ ∧ ( denom ‘ 𝐴 ) = 1 ) → 𝐴 = ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ) |
| 3 |
|
oveq2 |
⊢ ( ( denom ‘ 𝐴 ) = 1 → ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) = ( ( numer ‘ 𝐴 ) / 1 ) ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ ℚ ∧ ( denom ‘ 𝐴 ) = 1 ) → ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) = ( ( numer ‘ 𝐴 ) / 1 ) ) |
| 5 |
|
qnumcl |
⊢ ( 𝐴 ∈ ℚ → ( numer ‘ 𝐴 ) ∈ ℤ ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ ℚ ∧ ( denom ‘ 𝐴 ) = 1 ) → ( numer ‘ 𝐴 ) ∈ ℤ ) |
| 7 |
6
|
zcnd |
⊢ ( ( 𝐴 ∈ ℚ ∧ ( denom ‘ 𝐴 ) = 1 ) → ( numer ‘ 𝐴 ) ∈ ℂ ) |
| 8 |
7
|
div1d |
⊢ ( ( 𝐴 ∈ ℚ ∧ ( denom ‘ 𝐴 ) = 1 ) → ( ( numer ‘ 𝐴 ) / 1 ) = ( numer ‘ 𝐴 ) ) |
| 9 |
2 4 8
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℚ ∧ ( denom ‘ 𝐴 ) = 1 ) → 𝐴 = ( numer ‘ 𝐴 ) ) |
| 10 |
9 6
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℚ ∧ ( denom ‘ 𝐴 ) = 1 ) → 𝐴 ∈ ℤ ) |
| 11 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ ) → 𝐴 ∈ ℤ ) |
| 12 |
11
|
zcnd |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ ) → 𝐴 ∈ ℂ ) |
| 13 |
12
|
div1d |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ ) → ( 𝐴 / 1 ) = 𝐴 ) |
| 14 |
13
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ ) → ( denom ‘ ( 𝐴 / 1 ) ) = ( denom ‘ 𝐴 ) ) |
| 15 |
|
1nn |
⊢ 1 ∈ ℕ |
| 16 |
|
divdenle |
⊢ ( ( 𝐴 ∈ ℤ ∧ 1 ∈ ℕ ) → ( denom ‘ ( 𝐴 / 1 ) ) ≤ 1 ) |
| 17 |
11 15 16
|
sylancl |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ ) → ( denom ‘ ( 𝐴 / 1 ) ) ≤ 1 ) |
| 18 |
14 17
|
eqbrtrrd |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ ) → ( denom ‘ 𝐴 ) ≤ 1 ) |
| 19 |
|
qdencl |
⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ∈ ℕ ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ ) → ( denom ‘ 𝐴 ) ∈ ℕ ) |
| 21 |
|
nnle1eq1 |
⊢ ( ( denom ‘ 𝐴 ) ∈ ℕ → ( ( denom ‘ 𝐴 ) ≤ 1 ↔ ( denom ‘ 𝐴 ) = 1 ) ) |
| 22 |
20 21
|
syl |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ ) → ( ( denom ‘ 𝐴 ) ≤ 1 ↔ ( denom ‘ 𝐴 ) = 1 ) ) |
| 23 |
18 22
|
mpbid |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ ) → ( denom ‘ 𝐴 ) = 1 ) |
| 24 |
10 23
|
impbida |
⊢ ( 𝐴 ∈ ℚ → ( ( denom ‘ 𝐴 ) = 1 ↔ 𝐴 ∈ ℤ ) ) |