| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qdencl |
⊢ ( ( √ ‘ 𝐴 ) ∈ ℚ → ( denom ‘ ( √ ‘ 𝐴 ) ) ∈ ℕ ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( denom ‘ ( √ ‘ 𝐴 ) ) ∈ ℕ ) |
| 3 |
2
|
nnred |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( denom ‘ ( √ ‘ 𝐴 ) ) ∈ ℝ ) |
| 4 |
|
1red |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → 1 ∈ ℝ ) |
| 5 |
2
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( denom ‘ ( √ ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 6 |
5
|
nn0ge0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → 0 ≤ ( denom ‘ ( √ ‘ 𝐴 ) ) ) |
| 7 |
|
0le1 |
⊢ 0 ≤ 1 |
| 8 |
7
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → 0 ≤ 1 ) |
| 9 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 10 |
9
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( 1 ↑ 2 ) = 1 ) |
| 11 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
| 12 |
11
|
sqsqrtd |
⊢ ( 𝐴 ∈ ℤ → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
| 14 |
13
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( denom ‘ ( ( √ ‘ 𝐴 ) ↑ 2 ) ) = ( denom ‘ 𝐴 ) ) |
| 15 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → 𝐴 ∈ ℤ ) |
| 16 |
|
zq |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℚ ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → 𝐴 ∈ ℚ ) |
| 18 |
|
qden1elz |
⊢ ( 𝐴 ∈ ℚ → ( ( denom ‘ 𝐴 ) = 1 ↔ 𝐴 ∈ ℤ ) ) |
| 19 |
17 18
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( ( denom ‘ 𝐴 ) = 1 ↔ 𝐴 ∈ ℤ ) ) |
| 20 |
15 19
|
mpbird |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( denom ‘ 𝐴 ) = 1 ) |
| 21 |
14 20
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( denom ‘ ( ( √ ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
| 22 |
|
densq |
⊢ ( ( √ ‘ 𝐴 ) ∈ ℚ → ( denom ‘ ( ( √ ‘ 𝐴 ) ↑ 2 ) ) = ( ( denom ‘ ( √ ‘ 𝐴 ) ) ↑ 2 ) ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( denom ‘ ( ( √ ‘ 𝐴 ) ↑ 2 ) ) = ( ( denom ‘ ( √ ‘ 𝐴 ) ) ↑ 2 ) ) |
| 24 |
10 21 23
|
3eqtr2rd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( ( denom ‘ ( √ ‘ 𝐴 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 25 |
3 4 6 8 24
|
sq11d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( denom ‘ ( √ ‘ 𝐴 ) ) = 1 ) |
| 26 |
|
qden1elz |
⊢ ( ( √ ‘ 𝐴 ) ∈ ℚ → ( ( denom ‘ ( √ ‘ 𝐴 ) ) = 1 ↔ ( √ ‘ 𝐴 ) ∈ ℤ ) ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( ( denom ‘ ( √ ‘ 𝐴 ) ) = 1 ↔ ( √ ‘ 𝐴 ) ∈ ℤ ) ) |
| 28 |
25 27
|
mpbid |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( √ ‘ 𝐴 ) ∈ ℤ ) |